1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Branching ratio measurements in the predissociation of 12C16O by time-slice velocity-map ion imaging in the vacuum ultraviolet region
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/22/10.1063/1.3669426
1.
1. C. Letzelter, M. Eidelsberg, F. Rostas, J. Breton, and B. Thieblemont, Chem. Phys. 114(2), 273 (1987).
http://dx.doi.org/10.1016/0301-0104(87)80117-9
2.
2. M. Eidelsberg and F. Rostas, Astron. Astrophys. 235, 472 (1990).
3.
3. F. Rostas, F. Launay, M. Eidelsberg, M. Benharrous, C. Blaess, and K. P. Huber, Can. J. Phys. 72(11–12), 913 (1994).
http://dx.doi.org/10.1139/p94-120
4.
4. K. S. E. Eikema, W. Hogervorst, and W. Ubachs, Chem. Phys. 181(1–2), 217 (1994).
http://dx.doi.org/10.1016/0301-0104(94)85026-7
5.
5. R. N. Clayton, Nature (London) 415(6874), 860 (2002).
http://dx.doi.org/10.1038/415860b
6.
6. J. R. Lyons and E. D. Young, Nature (London) 435(7040), 317 (2005).
http://dx.doi.org/10.1038/nature03557
7.
7. S. Chakraborty, M. Ahmed, T. L. Jackson, and M. H. Thiemens, Science 321(5894), 1328 (2008).
http://dx.doi.org/10.1126/science.1159178
8.
8. J. E. Lee, E. A. Bergin, and J. R. Lyons, Meteorit. Planet. Sci. 43(8), 1351 (2008).
http://dx.doi.org/10.1111/j.1945-5100.2008.tb00702.x
9.
9. R. Visser, E. F. van Dishoeck, and J. H. Black, Astron. Astrophys. 503(2), 323 (2009).
http://dx.doi.org/10.1051/0004-6361/200912129
10.
10. K. D. McKeegan, A. P. A. Kallio, V. S. Heber, G. Jarzebinski, P. H. Mao, C. D. Coath, T. Kunihiro, R. C. Wiens, J. E. Nordholt, R. W. Moses, D. B. Reisenfeld, A. J. G. Jurewicz, and D. S. Burnett, Science 332(6037), 1528 (2011).
http://dx.doi.org/10.1126/science.1204636
11.
11. B. Marty, M. Chaussidon, R. C. Wiens, A. J. G. Jurewicz, and D. S. Burnett, Science 332(6037), 1533 (2011).
http://dx.doi.org/10.1126/science.1204656
12.
12. R. N. Clayton, in 74th Annual Meteoritical Society Meeting, 2011.
13.
13. H. Helm and P. C. Cosby, J. Chem. Phys. 90(8), 4208 (1989).
http://dx.doi.org/10.1063/1.455777
14.
14. C. W. Walter, P. C. Cosby, and H. Helm, J. Chem. Phys. 99(5), 3553 (1993).
http://dx.doi.org/10.1063/1.466152
15.
15. H. Gao, L. Yang, Y. Pan, J. Zhou, C. Y. Ng, and W. M. Jackson, J. Chem. Phys. 135, 134319 (2011).
http://dx.doi.org/10.1063/1.3644778
16.
16. P. F. Levelt, W. Ubachs, and W. Hogervorst, J. Chem. Phys. 97(10), 7160 (1992).
http://dx.doi.org/10.1063/1.463540
17.
17. M. Drabbels, J. Heinze, J. J. Termeulen, and W. L. Meerts, J. Chem. Phys. 99(8), 5701 (1993).
http://dx.doi.org/10.1063/1.465919
18.
18. M. Eidelsberg, Y. Sheffer, S. R. Federman, J. L. Lemaire, J. H. Fillion, F. Rostas, and J. Ruiz, Astrophys. J. 647(2), 1543 (2006).
http://dx.doi.org/10.1086/505486
19.
19. M. Eidelsberg, F. Launay, K. Ito, T. Matsui, P. C. Hinnen, E. Reinhold, W. Ubachs, and K. P. Huber, J. Chem. Phys. 121(1), 292 (2004).
http://dx.doi.org/10.1063/1.1756579
20.
20. B. L. G. Bakker and D. H. Parker, Chem. Phys. Lett. 330(3–4), 293 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01122-2
21.
21. T. Ebata, T. Sutani, and N. Mikami, Chem. Phys. Lett. 240(4), 357 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00536-D
22.
22. A. Okazaki, T. Ebata, T. Sutani, and N. Mikami, J. Chem. Phys. 108(5), 1765 (1998).
http://dx.doi.org/10.1063/1.475553
23.
23. A. Okazaki, T. Ebata, and N. Mikami, J. Chem. Phys. 114(18), 7886 (2001).
http://dx.doi.org/10.1063/1.1363672
24.
24. Y. Pan, H. Gao, L. Yang, J. Zhou, C. Y. Ng, and W. M. Jackson, J. Chem. Phys. 135, 071101 (2011).
http://dx.doi.org/10.1063/1.3626867
25.
25. G. N. Haddad and J. A. R. Samson, J. Chem. Phys. 84(12), 6623 (1986).
http://dx.doi.org/10.1063/1.450715
26.
26. P. G. Burke and K. T. Taylor, J. Phys. B 12(18), 2971 (1979).
http://dx.doi.org/10.1088/0022-3700/12/18/014
27.
27. H. Hofmann, H. P. Saha, and E. Trefftz, Astron. Astrophys. 126, 415 (1983).
28.
28. K. P. Huber, Philos. Trans. R. Soc. London, Ser. A 355(1729), 1527 (1997).
http://dx.doi.org/10.1098/rsta.1997.0074
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/22/10.1063/1.3669426
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

C+ ion yield spectra produced from the predissociation of CO following the absorption of a single sum-frequency VUV photon for the bands W(3sσ)1Π(v = 3) (left) and 1Π(v = 2) (right). The drop line positions were calculated according to the rotational constants in Ref. 2. The relative intensity of the spectrum is not normalized according to the VUV intensity.

Image of FIG. 2.

Click to view

FIG. 2.

Raw time-slice velocity-map ion images and their TKER spectra produced from the predissociation of CO following the absorption of a single sum-frequency VUV photon for the R(0) line of the band W(3sσ)1Π(v = 3) ((a) and (b)) at 108 016.4 cm−1 and the Q(1) line of the band 1Π(v = 2) ((c) and (d)) at 109 016.9 cm−1. The TKER spectra were normalized by treating the height of the C(3P) + O(3P) peak as 1. The assignments for each of the peaks are shown in (b) and (d).

Image of FIG. 3.

Click to view

FIG. 3.

C+ ion yield spectra produced from the predissociation of CO following the absorption of a single sum-frequency VUV photon for the bands (4sσ)1Σ+(v = 4) (left) and (4pσ)1Σ+(v = 3) (right). The drop line positions were obtained from Ref. 19. The relative intensity of the spectrum is not normalized according to the VUV intensity. The spectrum below 109 440 cm−1 was multiplied by a factor of 10 to show in the figure.

Image of FIG. 4.

Click to view

FIG. 4.

Raw time-slice velocity-map ion images and their TKER spectra produced from the predissociation of CO following the absorption of a single sum-frequency VUV photon for the R(0) line of the band (4pσ)1Σ+(v = 3) ((a) and (b)) at 109 484.7 cm−1 and the R(0) line of the band (4sσ)1Σ+(v = 4) ((c) and (d)) at 109 452.5 cm−1. The TKER spectra were normalized by treating the height of the C(3P) + O(3P) peak as 1. The assignments for each of the peaks are shown in (b) and (d).

Tables

Generic image for table

Click to view

Table I.

Branching ratios of the two Π bands.

Generic image for table

Click to view

Table II.

Branching ratios of the two Σ bands.

Loading

Article metrics loading...

/content/aip/journal/jcp/135/22/10.1063/1.3669426
2011-12-14
2014-04-16

Abstract

The first direct branching ratio measurement of the three lowest energy dissociation channels of CO that produce C(3P) + O(3P), C(1D) + O(3P), and C(3P) + O(1D) is reported. Rotational resolved carbon ion yield spectra for two Π bands (W(3sσ)1Π (v = 3) at 108 012.6 cm−1 and 1Π(v = 2) at 109 017 cm−1) and two Σ bands ((4sσ)1Σ+(v = 4) at 109 452 cm−1 and (4pσ)1Σ+(v = 3) at 109 485 cm−1) of CO were obtained. Our measurements show that the branching ratio in this energy region is strongly dependent on the electronic and vibrational energy but it is independent or just weakly dependent on the parity and rotational energy levels. To our knowledge, this is the first time that the triplet channel producing O(1D) has been experimentally observed and this is also the first time that a direct measurement of the branching ratio for the different channels in the predissociation of CO in this energy region has been made.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/22/1.3669426.html;jsessionid=2oj3t39usubai.x-aip-live-06?itemId=/content/aip/journal/jcp/135/22/10.1063/1.3669426&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Branching ratio measurements in the predissociation of 12C16O by time-slice velocity-map ion imaging in the vacuum ultraviolet region
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/22/10.1063/1.3669426
10.1063/1.3669426
SEARCH_EXPAND_ITEM