Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. R. Langley, J. Biomol. Struct. Dyn. 16(3), 487 (1998).
2. S. R. Kimura, A. J. Tebben, and D. R. Langley, Proteins: Struct., Funct. Genet. 71(4), 1919 (2008).
3. R. O. Dror, A. C. Pan, D. H. Arlow, D. W. Borhani, P. Maragakis, Y. Shan, H. Xu, and D. E. Shaw, Proc. Natl. Acad. Sci. U.S.A. 108(32), 13118 (2011).
4. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117(19), 5179 (1995).
5. A. D. MacKerell Jr., D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102(18), 3586 (1998).
6. J. Tirado-Rives and W. L. Jorgensen, J. Am. Chem. Soc. 112(7), 2773 (1990).
7. C. R. W. Guimarães and M. Cardozo, J. Chem. Inf. Model. 48(5), 958 (2008).
8. Y. Tong, Y. Mei, Y. L. Li, C. G. Ji, and J. Z. Zhang, J. Am. Chem. Soc. 132(14), 5137 (2010).
9. P. E. M. Lopes, B. Roux, and A. D. MacKerell Jr., Theor. Chem. Acc. 124(1–2), 11 (2009).
10. S. Patel and C. L. Brooks III, J. Comput. Chem. 25(1), 1 (2004).
11. S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys. 101(7), 6141 (1994).
12. Y. P. Liu, K. Kim, B. J. Berne, R. A. Friesner, and S. W. Rick, J. Chem. Phys. 108(12), 4739 (1998).
13. B. Ma, J. H. Lii, and N. L. Allinger, J. Comput. Chem. 21(10), 813 (2000).<813::AID-JCC1>3.0.CO;2-T
14. G. Lamoureux and B. Roux, J. Chem. Phys. 119(6), 3025 (2003).
15. J. Gao and X. Xia, Science 258(5082), 631 (1992).
16. A. Warshel and M. Levitt, J. Mol. Biol. 103(2), 227 (1976).
17. C. G. Ji and J. Z. Zhang, J. Phys. Chem. B 113(49), 16059 (2009).
18. Y. Xiang, L. Duan, and J. Z. Zhang, J. Chem. Phys. 134(20), 205101 (2011).
19. A. van der Vaart, V. Gogonea, S. L. Dixon, and K. M. Merz Jr., J. Comput. Chem. 21(16), 1494 (2000).<1494::AID-JCC6>3.0.CO;2-4
20. W. Xie, M. Orozco, D. G. Truhlar, and J. Gao, J. Chem. Theor. Comput. 5(3), 459 (2009).
21. T. H. Dunning , Jr. and P. J. Hay, in Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1976), pp. 128.
22. C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman, J. Phys. Chem. 97(40), 10269 (1993).
23. W. D. Cornell, P. Cieplak, C. I. Bayly, and P. A. Kollman, J. Am. Chem. Soc. 115(21), 9620 (1993).
24. M. R. Shirts, J. W. Pitera, W. C. Swope, and V. S. Pande, J. Chem. Phys. 119(11), 5740 (2003).
25. M. T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. V. Kale, R. D. Skeel, and K. Schulten, Int. J. High Perform. Comput. Appl. 10(4), 251 (1996).
26. Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Yeh Lin, T. Van Voorhis, S. Hung Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. Min Rhee, J. Ritchie, E. Rosta, C. David Sherrill, A. C. Simmonett, J. E. Subotnik, H. Lee Woodcock Iii, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer Iii, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8(27), 3172 (2006).
27. R. Wolfenden, L. Andersson, P. M. Cullis, and C. C. B. Southgate, Biochemistry 20(4), 849 (1981).

Data & Media loading...


Article metrics loading...



We present a simple and practical method to include ligand electronic polarization in molecular dynamics (MD) simulation of biomolecular systems. The method involves periodically spawning quantum mechanical (QM) electrostatic potential (ESP) calculations on an extra set of computer processors using molecular coordinate snapshots from a running parallel MD simulation. The QM ESPs are evaluated for the small-molecule ligand in the presence of the electric field induced by the protein, solvent, and ion charges within the MD snapshot. Partial charges on ligand atom centers are fit through the multi-conformer restrained electrostatic potential (RESP) fit method on several successive ESPs. The RESP method was selected since it produces charges consistent with the AMBER/GAFF force-field used in the simulations. The updated charges are introduced back into the running simulation when the next snapshot is saved. The result is a simulation whose ligand partial charges continuously respond in real-time to the short-term mean electrostatic field of the evolving environment without incurring additional wall-clock time. We show that (1) by incorporating the cost of polarization back into the potential energy of the MD simulation, the algorithm conserves energy when run in the microcanonical ensemble and (2) the mean solvation free energies for 15 neutral amino acid side chains calculated with the quantum polarized fluctuating charge method and thermodynamic integration agree better with experiment relative to the Amber fixed charge force-field.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd