Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/24/10.1063/1.3675680
1.
1. A. Tsukazaki, A. Ohtomo, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater. 4, 42 (2005).
http://dx.doi.org/10.1038/nmat1284
2.
2. A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, Science 315, 1388 (2007).
http://dx.doi.org/10.1126/science.1137430
3.
3. M. Sumiya and S. Fuke, MRS Internet J. Nitride Semicond. Res. 9, 1 (2004).
4.
4. E. Fujimoto, M. Sumiya, T. Ohnishi, K. Watanabe, M. Lippmaa, Y. Matsumoto, and H. Koinuma, Appl. Phys. Express 2, 045502 (2009).
http://dx.doi.org/10.1143/APEX.2.045502
5.
5. Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
http://dx.doi.org/10.1063/1.368595
6.
6. S. F. Chichibu, T. Yoshida, T. Onuma, and H. Nakanishi, J. Appl. Phys. 91, 874 (2002).
http://dx.doi.org/10.1063/1.1426238
7.
7. Y. Oumi, H. Takaba, S. Salai, C. Ammal, M. Kubo, K. Teraishi, A. Miyamoto, M. Kawasaki, M. Yoshimoto, and H. Koinuma, Jpn. J. Appl. Phys. 38, 2603 (1999).
http://dx.doi.org/10.1143/JJAP.38.2603
8.
8. M. Sumiya, A. Tsukazaki, S. Fuke, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Surf. Sci. 223, 206 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00923-1
9.
9. K. Nakahara, S. Akasaki, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 97, 013501 (2010).
http://dx.doi.org/10.1063/1.3459139
10.
10. B. Delley, J. Chem. Phys. 92, 508 (1990).
http://dx.doi.org/10.1063/1.458452
11.
11. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
12.
12. B. Delley, J. Chem. Phys. 113, 7756 (2000).
http://dx.doi.org/10.1063/1.1316015
13.
13. Y. Kim, K. Page, and R. Seshadri, Appl. Phys. Lett. 90, 101904 (2007).
http://dx.doi.org/10.1063/1.2711289
14.
14. O. Dulub, U. Diebold, and G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.016102
15.
15. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3811
16.
16. B. Meyer, Phys. Rev. B 69, 045416 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045416
17.
17. A. Wander and N. M. Harrison, J. Chem. Phys. 115, 2312 (2001).
http://dx.doi.org/10.1063/1.1384030
18.
18. Y. Matsuo, M. Nimura, A. Koukitu, Y. Kumagai, H. Seki, S. Takami, M. Kubo, and A. Miyamoto, Jpn. J. Appl. Phys. 39, 6174 (2000).
http://dx.doi.org/10.1143/JJAP.39.6174
19.
19. J. Li, Z. Chen, T. J. Emge, T. Yuen, and D. M. Proserpio, Inorg. Chim. Acta. 273, 310 (1998).
http://dx.doi.org/10.1016/S0020-1693(97)06035-0
20.
20.See supplementary information at http://dx.doi.org/10.1063/1.3675680 for “Zn coordination number change from four to six on +c ZnO surface.” [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/24/10.1063/1.3675680
Loading
/content/aip/journal/jcp/135/24/10.1063/1.3675680
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/24/10.1063/1.3675680
2011-12-29
2016-12-02

Abstract

It has been experimentally shown that an O(−c)-polar ZnOsurface is more stable than a Zn(+c)-polar surface in H2 ambient. We applied first-principles calculations to investigating the polarity dependence on the stability at the electronic level. The calculations revealed that the −c surface terminated with H atom was stable maintaining a wurtzite structure, whereas the +c surface was unstable due to the change of coordination numbers of Zn at the topmost surface from four (wurtzite) to six (rock salt). This causes the generation of O2 molecules, resulting in instability at the +c surface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/24/1.3675680.html;jsessionid=7jkZq5-iumgPy9zimP89aB7d.x-aip-live-06?itemId=/content/aip/journal/jcp/135/24/10.1063/1.3675680&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/24/10.1063/1.3675680&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/24/10.1063/1.3675680'
Right1,Right2,Right3,