Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. P. Toennies and A. F. Vilesov, Ann. Rev. Phys. Chem. 49, 1 (1998).
2. K. R. Atkins, in Proceedings of the International School of Physics “Enrico Fermi,” Course XXI on Liquid Helium, edited by G. Carerei (Academic, New York, 1963), p. 403.
3. A. Scheidemann, B. Schilling, and J. P. Toennies, J. Phys. Chem. 97, 2128 (1993).
4. H. Schöbel, P. Bartl, C. Leidlmair, M. Daxner, S. Zöttl, S. Denifl, T. D. Märk, P. Scheier, D. Spångberg, A. Mauracher, and D. K. Bohme, Phys. Rev. Lett. 105, 243402 (2010).
5. B. von Issendorff, H. Haberland, R. Fröchtenicht, and J. P. Toennies, Chem. Phys. Lett. 233, 23 (1995).
6. B. E. Callicoatt, D. D. Mar, V. A. Apkarian, and K. C. Janda, J. Chem. Phys. 105, 7872 (1996).
7. W. K. Lewis, M. Lindsay, R. J. Bemish, and R. E. Miller, J. Am. Chem. Soc. 127, 7235 (2005).
8. A. M. Ellis and S. Yang, Phys. Rev. A 76, 032714 (2007).
9. E. Scifoni, E. Bodo, G. Dellepiane, and F. A. Gianturco, Eur. Phys. J. D 30, 363 (2004).
10. B. E. Callicoatt, K. Förde, L. Jung, T. Ruchti, and K. C. Janda, J. Chem. Phys. 108, 10195 (1998).
11. S. Yang, S. M. Brereton, and A. M. Ellis, Rev. Sci. Instrum. 76, 104102 (2005).
12. S. Yang, S. M. Brereton, M. D. Wheeler, and A. M. Ellis, Phys. Chem. Chem. Phys. 7, 4082 (2005).
13. S. Yang and A. M. Ellis, Rev. Sci. Instrum. 79, 016106 (2008).

Data & Media loading...


Article metrics loading...



The He n +/He2 + (n ≥ 3) signal ratios in the mass spectra derived from electron impact ionization of pure heliumnanodroplets are shown to increase with droplet size, reaching an asymptotic limit at an average droplet size of approximately 50 000 helium atoms. This is explained in terms of a charge hopping model, where on average the positive charge is able to penetrate more deeply into the liquid helium as the droplet size increases. The deeper the point where the charge localizes to form He2 +, the greater the likelihood of collisions with the surrounding helium as the ion begins to leave the droplet, thus increasing the probability that helium will be ejected in the form of He n + (n ≥ 3) cluster ions rather than He2 +. The addition of a dopant alters the He n +/He2 + ratio for small heliumdroplets, an observation attributed to the potential energy gradient created by the cation-dopant interaction and its effect in drawing the positive charge towards the dopant in the interior of the droplet.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd