1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Effective temperature and glassy dynamics of active matter
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/5/10.1063/1.3624753
1.
1. R. A. Simha and S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002);
http://dx.doi.org/10.1103/PhysRevLett.89.058101
1.Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha, Phys. Rev. Lett. 92, 118101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.118101
2.
2. J. Deseigne, O. Dauchot, and H. Chaté, Phys. Rev. Lett. 105, 098001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.098001
3.
3. J. Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.088304
4.
4. F. Ilievski, M. Mani, G. M. Whitesides, and M. P. Brenner, Phys. Rev. E 83, 017301 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.017301
5.
5. L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E 55, 3898 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.3898
6.
6. L. Berthier and J.-L. Barrat, J. Chem. Phys. 116, 6228 2002);
http://dx.doi.org/10.1063/1.1460862
6.L. Berthier and J.-L. Barrat, Phys. Rev. Lett. 89, 095702 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.095702
7.
7. T. K. Haxton and A. J. Liu, Phys. Rev. Lett. 99, 195701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.195701
8.
8. H. Makse and J. Kurchan, Nature (London) 415, 614 (2002).
http://dx.doi.org/10.1038/415614a
9.
9. A. E. Koshelev and V. M. Vinokur, Phys. Rev. Lett. 73, 3580 1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3580
10.
10. A. B. Kolton, R. Exartier, L. F. Cugliandolo, D. Domínguez, and N. Grønbech-Jensen, Phys. Rev. Lett. 89, 227001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.227001
11.
11. P. Martin, A. J. Hudspeth, and F. Jülicher, Proc. Natl. Acad. Sci. U.S.A. 98, 14380 (2001).
http://dx.doi.org/10.1073/pnas.251530598
12.
12. T. Lu, J. Hasty, and P. G. Wolynes, Biophys. J. 91, 84 (2006).
http://dx.doi.org/10.1529/biophysj.105.074914
13.
13. F. Ziebert and I. S. Aranson, Phys. Rev. E 77, 011918 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.011918
14.
14. D. Loi, S. Mossa, and L. F. Cugliandolo, Phys. Rev. E 77, 051111 (2008);
http://dx.doi.org/10.1103/PhysRevE.77.051111
14.D. Loi, S. Mossa, and L. F. Cugliandolo, Soft Matter 7, 3726 (2011).
http://dx.doi.org/10.1039/c0sm01484b
15.
15. D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, Science 315, 370 (2007).
http://dx.doi.org/10.1126/science.1134404
16.
16. C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, J. Cell Biol. 183, 583 (2008).
http://dx.doi.org/10.1083/jcb.200806149
17.
17. D. Loi, S. Mossa, and L. F. Cugliandolo, e-print arXiv:1105.0806.
18.
18. S. Wang, T. Shen, and P. G. Wolynes, J. Chem. Phys. 134, 014510 (2011).
http://dx.doi.org/10.1063/1.3518450
19.
19. V. Lubchenko and P. G. Wolynes, J. Chem. Phys. 121, 2852 2004).
http://dx.doi.org/10.1063/1.1771633
20.
20. T. Shen and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 101, 8547 (2004);
http://dx.doi.org/10.1073/pnas.0402602101
20.T. Shen and P. G. Wolynes, Phys. Rev. E 72, 041927 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.041927
21.
21. P. G. Wolynes and J. M. Deutch, J. Chem. Phys. 67, 733 (1977).
http://dx.doi.org/10.1063/1.434881
22.
22. J. L. Skinner and P. G. Wolynes, Physica A 96, 561 (1979).
http://dx.doi.org/10.1016/0378-4371(79)90013-X
23.
23. R. Alon, D. A. Hammer, and T. A. Springer, Nature (London) 374, 539 (1995).
http://dx.doi.org/10.1038/374539a0
24.
24. O. K. Dudko, G. Hummer, and A. Szabo, Phys. Rev. Lett. 96, 108101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.108101
25.
25. M. Fixman, J. Chem. Phys. 51, 3270 1969).
http://dx.doi.org/10.1063/1.1672506
26.
26. P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz, V. Viasnoff, J. P. Butler, and J. J. Fredberg, Nat. Mater. 4, 557 (2005).
http://dx.doi.org/10.1038/nmat1404
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/5/10.1063/1.3624753
Loading
/content/aip/journal/jcp/135/5/10.1063/1.3624753
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/5/10.1063/1.3624753
2011-08-04
2014-09-18

Abstract

A systematic expansion of the many-body master equation for active matter, in which motors power configurational changes as in the cytoskeleton, is shown to yield a description of the steady state and responses in terms of an effective temperature. The effective temperature depends on the susceptibility of the motors and a Peclet number which measures their strength relative to thermal Brownian diffusion. The analytic prediction is shown to agree with previous numerical simulations and experiments. The mapping also establishes a description of aging in active matter that is also kinetically jammed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/5/1.3624753.html;jsessionid=eglb90g1s807h.x-aip-live-06?itemId=/content/aip/journal/jcp/135/5/10.1063/1.3624753&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Effective temperature and glassy dynamics of active matter
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/5/10.1063/1.3624753
10.1063/1.3624753
SEARCH_EXPAND_ITEM