Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. Qin, L. Kreplak, and M. J. Buehler, PLoS ONE 4, e7294 (2009).
2. M. J. Buehler and Y. C. Yung, Nature Mater. 8, 175 (2009);
2.Z. Qin and M. J. Buehler, Phys. Rev. Lett.104, 198304 (2010).
3. F. Chiti and C. M. Dobson, Annu. Rev. Biochem. 75, 333 (2006).
4. A. K. Thakur, M. Jayaraman, R. Mishra, M. Thakur, V. M. Chellgren, I.-J. L. Byeon, D. H. Anjum, R. Kodali, T. P. Creamer, J. F. Conway, A. M. Gronenborn, and R. Wetzel, Nat. Struct. Mol. Biol. 16, 380 (2009).
5. W. Dzwolak, T. Muraki, M. Kato, and Y. Taniguchi, Biopolymers 73, 463 (2004);
5.W. Dzwolak and V. Smirnovas, Biophys. Chem. 115, 49 (2005).
6. B. H. Zimm and J. K. Bragg, J. Chem. Phys. 31, 526 (1959);
6.H. A. Scheraga, J. A. Vila, and D. R. Ripoll, Biophys. Chem. 255, 101 (2002).
7. A. V. Yakubovich, I. A. Solov'yov, A. V. Solov'yov, and W. Greiner, Eur. Phys. J. D 51, 25 (2009).
8. F. Ding, J. M. Borreguero, S. V. Buldyrey, H. E. Stanley, and N. V. Dokholyan, Proteins: Struct., Funct., Genet. 53, 220 (2003).
9. T. X. Hoang, F. Seno, J. R. Banavar, and A. Maritan, Proc. Natl. Acad. Sci. U.S.A. 101, 7960 (2004);
9.T. X. Hoang, L. Marsella, A. Trovato, F. Seno, J. R. Banavar, and A. Maritan, Proc. Natl. Acad. Sci. U.S.A. 103, 6883 (2006).
10. J. S. Schreck and J.-M. Yuan, Phys. Rev. E 81, 061919 (2010).
11. S. Auer, A. Trovato, and M. Vendruscolo, PLoS Comput. Biol. 5, e1000458 (2009).
12. Y. Zhou, C. Hall, and M. Karplus, Phys. Rev. Lett. 77, 2822 (1996);
12.A. V. Smith and C. K. Hall, Proteins 44, 344 (2001).
13. S. Auer and D. Kashchiev, Phys. Rev. Lett. 104, 168105 (2010).
14. Y. Iba, Int. J. Mod. Phys. C 12, 623 (2001).
15. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
16. A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules ( American Institute of Physics, New York, 1994).
17. S. Barton, R. Jacak, S. D. Khare, F. Ding, and N. V. Dokholyan, J. BioChem. 282, 25487 (2007).
18. A. E. Garcia and K. Y. Sanbonmatsu, Proc. Natl. Acad. Sci. U.S.A. 99, 2782 (2002);
18.G. S. Jas and K. Kuczera, Biophys. J. 87, 3786 (2004).
19. J. M. Scholtz, S. Marqusee, R. L. Baldwin, E. J. York, J. M. Stewart, M. Santoro, and D. W. Bolen, Proc. Natl. Acad. Sci. U.S.A. 88, 2854 (1991).
20. S. Auer, M. A. Miller, S. V. Krivov, C. M. Dobson, M. Karplus, and M. Vendruscolo, Phys. Rev. Lett. 99, 178104 (2007).

Data & Media loading...


Article metrics loading...



By using a generic coarse grained polypeptide model, we perform multicanonical molecular dynamics simulations for determining the equilibrium conformation state diagram of a single homopolypeptide chain as a function of the chain length and temperature. The state diagram highlights the thermal regimes of stability for various conformational patterns in polypeptides, including swollen, random and collapsed coils, globular structures, extended and bended α helices, and compact β bundles. Remarkably, at low temperatures we observe a sharp transition from extended α helix to compact β bundles as the chain length increases. This finding indicates that the chain length is one of the intrisic factors that can trigger α-β transformations in a broad class of polypeptides.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd