1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Methanol nucleation in a supersonic nozzle
Rent:
Rent this article for
USD
10.1063/1.3624756
/content/aip/journal/jcp/135/7/10.1063/1.3624756
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/7/10.1063/1.3624756

Figures

Image of FIG. 1.
FIG. 1.

The measured pressure ratios and temperatures for (a) the condensing flow of a dilute MeOH mixture and (b) the condensing flow of a D2O mixture under comparable experimental conditions (Ref. 26). The solid gray lines are the measured pressure ratios p/p 0, while the dashed gray lines are those expected for an isentropic expansion of the gas mixture in the absence of vapor phase association. The open circles, solid black lines, and dashed black lines, represent T TDLAS, the centerline temperature T, and the temperature expected for an isentropic expansion of the gas in the absence of clustering, respectively. The shaded regions correspond to the nucleation zone.

Image of FIG. 2.
FIG. 2.

The nucleation conditions for the n-alcohols are summarized in a Volmer plot. For each alcohol the data lie along a straight line. Data from shorter chain length n-alcohols lie above and to the right of those of longer chain length alcohols. For methanol, the legend indicates the nozzle used (H or H2), and shows if the analysis was made with (w/) or without (w/o) considering BLC. Data from Ghosh et al. (Ref. 30) are analyzed without BLC.

Image of FIG. 3.
FIG. 3.

The one-dimensional SAXS spectra measured in 2005 as a function of p v 0 where p 0 and T 0 were maintained at 59.67 kPa and 35 °C, respectively. The spectrum for 1982.7 Pa MeOH is at the true absolute intensity. The spectra at p v 0 = 1677.2, 1223.6, 816.3, and 510.9 Pa are offset by factors 10−1, 10−2, 10−3, and 10−4, respectively. The solid line is the fit to the spectrum at p v 0 = 1982.7 Pa assuming the droplets are a collection of polydisperse spheres that follow a Schulz distribution.

Image of FIG. 4.
FIG. 4.

The mean radius 〈r〉, the width of the distribution function σ, and the average droplet number density N avg are shown as a function of the initial methanol partial pressure p v 0. Here, 〈r〉 and σ are shown as a function of p v 0 corresponding to the SAXS measurements, while N avg values are shown as a function of p v 0 from the corresponding PTM/TDLAS experiments. The legend indicates the nozzle used (H or H2) and shows whether the analysis included (w/) or ignored (w/o) BLC. The open circles lie almost directly on top of the circles with crosses.

Image of FIG. 5.
FIG. 5.

The predicted specific particle concentration, Ñ theory, is calculated by integrating the nucleation pulse and scaling the results to match the experimental value at the exit of the nozzle. Measured values of Ñ from independent SAXS experiments are compared to each other and to Ñ theory. Downstream of the nucleation pulse a constant value of Ñ implies that coagulation and Ostwald ripening are not important physical processes on the timescale of these experiments.

Image of FIG. 6.
FIG. 6.

The experimental nucleation rates J max of methanol as a function of the monomer supersaturation S J max. The nucleation temperature range is also indicated here. The legend for methanol data indicate the nozzle used (H or H2) and show if the analysis is with (w/) or without (w/o) BLC.

Image of FIG. 7.
FIG. 7.

The experimental nucleation conditions in the SN and NPC (Refs. 22 and 23) are compared to those predicted by CNT (Eq. (2)). For methanol, the legend indicates the nozzle used (H or H2), and whether the analysis is with (w/) or without (w/o) BLC.

Image of FIG. 8.
FIG. 8.

The scaled nucleation rates are plotted as a function of the scaled free energy of formation in a Hale plot. Data from the SN is compared to the NPC data of Strey et al. (Refs. 22 and 23). For SN data, H, or H2 indicates the nozzle used, w/BLC or w/o BLC indicates whether the analysis included BLC or not.

Image of FIG. 9.
FIG. 9.

The experimental and theoretical values Ω increase with the chain length of the n-alcohol. The experimental values are consistently higher than the theoretical values by 0.23–0.3.

Image of FIG. 10.
FIG. 10.

The ratio log(J exp/J BD) is plotted as a function of 1/T to compare the experimental nucleation rates to those calculated from CNT using Eq. (2). The dashed line represent 1 order of magnitude agreement between nucleation rates determined in experiments to those predicted by CNT.

Tables

Generic image for table
Generic image for table
Table I.

The methanol nucleation parameters and corresponding nucleation rates were determined by either including BLC (w/BLC) or ignoring BLC (w/o BLC) in the analysis. The stagnation pressure p 0 for all experiments is 59.67 kPa, p v 0 is the partial pressure of the condensible species at the nozzle inlet, T 0 is the stagnation temperature, p J max, T J max, S J max, and Δt Jmax  are the partial pressure of monomer, temperature, monomer supersaturation, and characteristic time corresponding to maximum nucleation rate J max, respectively, ρNZVV is the density ratio of the gas in the nucleation zone to that in viewing volume, T vv is the temperature at the viewing volume, and N avg is the average particle number density.

Generic image for table
Table II.

The size distribution parameters derived by fitting scattering from a Schulz distribution of polydisperse spheres to the SAXS spectra. The stagnation pressure p 0 for all experiments is maintained at 59.67 kPa, p v 0 is the partial pressure of the condensible species at nozzle inlet, T 0 is the stagnation temperature, 〈r〉 is the mean radius, σ is the width of the size distribution function, I 0 is the scattering intensity as q SAXS → 0, and the ratio σ/〈r〉 is the polydispersity index.

Loading

Article metrics loading...

/content/aip/journal/jcp/135/7/10.1063/1.3624756
2011-08-19
2014-04-23
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Methanol nucleation in a supersonic nozzle
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/7/10.1063/1.3624756
10.1063/1.3624756
SEARCH_EXPAND_ITEM