1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Direct simulation of electron transfer using ring polymer molecular dynamics: Comparison with semiclassical instanton theory and exact quantum methods
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/7/10.1063/1.3624766
1.
1. M. H. V. Huynh and T. J. Meyer, Chem. Rev. 107, 5004 (2007).
http://dx.doi.org/10.1021/cr0500030
2.
2. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006).
http://dx.doi.org/10.1073/pnas.0603395103
3.
3. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).
http://dx.doi.org/10.1016/0304-4173(85)90014-X
4.
4. H. B. Gray and J. R. Winkler, Annu. Rev. Biochem. 65, 537 (1996).
http://dx.doi.org/10.1146/annurev.bi.65.070196.002541
5.
5. O. Miyashita, M. Y. Okamura, and J. N. Onuchic, Proc. Natl. Acad. Sci. U.S.A. 102, 3558 (2005).
http://dx.doi.org/10.1073/pnas.0409600102
6.
6. J. M. Jean, R. A. Friesner, and G. R. Fleming, J. Chem. Phys. 96, 5827 (1992).
http://dx.doi.org/10.1063/1.462858
7.
7. J. Blumberger, I. Tavernelli, M. L. Klein, and M. Sprik, J. Chem. Phys. 124, 064507 (2006).
http://dx.doi.org/10.1063/1.2162881
8.
8. L. W. Ungar, M. D. Newton, and G. A. Voth, J. Phys. Chem. B 103, 7367 (1999).
http://dx.doi.org/10.1021/jp991057e
9.
9. P. Ehrenfest, Z. Phys. 45, 455 (1927).
http://dx.doi.org/10.1007/BF01329203
10.
10. A. D. Mclachlan, Mol. Phys. 8, 39 (1964).
http://dx.doi.org/10.1080/00268976400100041
11.
11. J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
http://dx.doi.org/10.1063/1.459170
12.
12. J. C. Tully, Faraday Discuss. 110, 407 (1998).
http://dx.doi.org/10.1039/a801824c
13.
13. M. Ben-Nun, J. Quenneville, and T. J. Martinez, J. Phys. Chem. A 104, 5161 (2000).
http://dx.doi.org/10.1021/jp994174i
14.
14. H. D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979).
http://dx.doi.org/10.1063/1.437910
15.
15. H. D. Meyer and W. H. Miller, J. Chem. Phys. 72, 2272 (1980).
http://dx.doi.org/10.1063/1.439462
16.
16. G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.578
17.
17. J. S. Cao and G. A. Voth, J. Chem. Phys. 105, 6856 (1996).
http://dx.doi.org/10.1063/1.471980
18.
18. J. S. Cao and G. A. Voth, J. Chem. Phys. 106, 1769 (1997).
http://dx.doi.org/10.1063/1.474123
19.
19. N. Ananth and T. F. Miller III, J. Chem. Phys. 133, 024103 (2010).
http://dx.doi.org/10.1063/1.3511700
20.
20. S. Nielsen, R. Kapral, and G. Ciccotti, J. Chem. Phys. 115, 5805 (2001).
http://dx.doi.org/10.1063/1.1400129
21.
21. J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129, 044104 (2008).
http://dx.doi.org/10.1063/1.2955564
22.
22. P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Annu. Rev. Phys. Chem. 53, 291 (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.082301.113146
23.
23. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
24.
24. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
25.
25. D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).
http://dx.doi.org/10.1063/1.441588
26.
26. T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. 122, 184503 (2005).
http://dx.doi.org/10.1063/1.1893956
27.
27. T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. 123, 154504 (2005).
http://dx.doi.org/10.1063/1.2074967
28.
28. B. J. Braams, T. F. Miller III, and D. E. Manolopoulos, Chem. Phys. Lett. 418, 179 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.10.127
29.
29. S. Habershon, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009).
http://dx.doi.org/10.1063/1.3167790
30.
30. T. E. Markland, J. A. Morrone, B. J. Berne, K. Miyazaki, E. Rabani, and D. R. Reichman, Nat. Phys. 7, 134 (2011).
http://dx.doi.org/10.1038/nphys1865
31.
31. I. R. Craig and D. E. Manolopoulos, Chem. Phys. 322, 236 (2006).
http://dx.doi.org/10.1016/j.chemphys.2005.07.012
32.
32. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005).
http://dx.doi.org/10.1063/1.1850093
33.
33. R. Collepardo-Guevara, I. R. Craig, and D. E. Manolopoulos, J. Chem. Phys. 128, 144502 (2008).
http://dx.doi.org/10.1063/1.2883593
34.
34. T. E. Markland, S. Habershon, and D. E. Manolopoulos, J. Chem. Phys. 128, 194506 (2008).
http://dx.doi.org/10.1063/1.2925792
35.
35. N. Boekelheide, R. Salomon-Ferrer, and T. F. Miller III, “Dynamics and dissipation in enzyme catalysis,” Proc. Natl. Acad. Sci. USA (in press).
36.
36. R. Collepardo-Guevara, Y. V. Suleimanov, and D. E. Manolopoulos, J. Chem. Phys. 130, 174713 (2009).
http://dx.doi.org/10.1063/1.3127145
37.
37. J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 131, 214106 (2009).
http://dx.doi.org/10.1063/1.3267318
38.
38. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 123, 034102 (2005).
http://dx.doi.org/10.1063/1.1954769
39.
39. M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).
http://dx.doi.org/10.1063/1.446740
40.
40. A. R. Menzeleev and T. F. Miller III, J. Chem. Phys. 132, 034106 (2010).
http://dx.doi.org/10.1063/1.3292576
41.
41. T. F. Miller III, J. Chem. Phys. 129, 194502 (2008).
http://dx.doi.org/10.1063/1.3013357
42.
42. E. Wigner, Z. Phys. Chem. Abt. B 19, 203 (1932).
43.
43. H. Eyring, J. Chem. Phys. 3, 107 (1935).
http://dx.doi.org/10.1063/1.1749604
44.
44. J. C. Keck, J. Chem. Phys. 32, 1035 (1960).
http://dx.doi.org/10.1063/1.1730846
45.
45. W. H. Miller, J. Chem. Phys. 58, 1664 (1973).
http://dx.doi.org/10.1063/1.1679410
46.
46. D. Chandler, J. Chem. Phys. 68, 2959 (1978).
http://dx.doi.org/10.1063/1.436049
47.
47. C. H. Bennett, in Algorithms for Chemical Computations, edited by R. E. Christofferson (American Chemical Society, Washington, DC, 1977), p. 63.
48.
48. E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, Chem. Phys. Lett. 156, 472 (1989).
http://dx.doi.org/10.1016/S0009-2614(89)87314-2
49.
49. G. K. Schenter, B. C. Garrett, and D. G. Truhlar, J. Chem. Phys. 119, 5828 (2003).
http://dx.doi.org/10.1063/1.1597477
50.
50. J. B. Watney, A. V. Soudackov, K. F. Wong, and S. Hammes-Schiffer, Chem. Phys. Lett. 418, 268 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.10.129
51.
51. G. Mills, G. K. Schenter, D. E. Makarov, and H. Jónsson, Chem. Phys. Lett. 278, 91 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00886-5
52.
52. A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).
http://dx.doi.org/10.1016/0003-4916(83)90202-6
53.
53. V. A. Benderskii, D. E. Makarov, and C. A. Wight, Adv. Chem. Phys. 88, 55 (1994).
http://dx.doi.org/10.1002/SERIES2007
54.
54. S. Chapman, B. C. Garrett, and W. H. Miller, J. Chem. Phys. 63, 2710 (1975).
http://dx.doi.org/10.1063/1.431620
55.
55. C. G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).
http://dx.doi.org/10.1103/PhysRevD.16.1762
56.
56. P. Hanggi and W. Hontscha, J. Chem. Phys. 88, 4094 (1988).
http://dx.doi.org/10.1063/1.453812
57.
57. W. H. Miller, J. Chem. Phys. 62, 1899 (1975).
http://dx.doi.org/10.1063/1.430676
58.
58. S. C. Althorpe, J. Chem. Phys. 134, 114104 (2011).
http://dx.doi.org/10.1063/1.3563045
59.
59. D. M. Ceperley and G. Jacucci, Phys. Rev. Lett. 58, 1648 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.1648
60.
60. A. Kuki and P. G. Wolynes, Science 236, 1647 (1987).
http://dx.doi.org/10.1126/science.3603005
61.
61. C. Alexandrou and J. W. Negele, Phys. Rev. C 37, 1513 (1988).
http://dx.doi.org/10.1103/PhysRevC.37.1513
62.
62. J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 134, 054109 (2011).
http://dx.doi.org/10.1063/1.3530589
63.
63. G. Mills, G. K. Schenter, D. E. Makarov, and H. Jónsson, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1997), p. 405.
64.
64. N. Makri, Chem. Phys. Lett. 193, 435 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85654-S
65.
65. M. Topaler and N. Makri, J. Phys. Chem. 100, 4430 (1996).
http://dx.doi.org/10.1021/jp951673k
66.
66. M. Topaler and N. Makri, Chem. Phys. Lett. 210, 285 (1993).
http://dx.doi.org/10.1016/0009-2614(93)89135-5
67.
67. M. Topaler and N. Makri, Chem. Phys. Lett. 210, 448 (1993).
http://dx.doi.org/10.1016/0009-2614(93)87052-5
68.
68. D. E. Makarov and N. Makri, Phys. Rev. A 48, 3626 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.3626
69.
69. W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983).
http://dx.doi.org/10.1063/1.445581
70.
70. R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118 (1963).
http://dx.doi.org/10.1016/0003-4916(63)90068-X
71.
71. E. Sim, G. Krilov, and B. J. Berne, J. Phys. Chem. A 105, 2824 (2001).
http://dx.doi.org/10.1021/jp004307w
72.
72. R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
http://dx.doi.org/10.1063/1.1742723
73.
73. R. A. Marcus, Disc. Faraday Soc. 29, 21 (1960).
http://dx.doi.org/10.1039/df9602900021
74.
74. R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
http://dx.doi.org/10.1063/1.1696792
75.
75. J. Ulstrup and J. Jortner, J. Chem. Phys. 63, 4358 (1975).
http://dx.doi.org/10.1063/1.431152
76.
76. R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M. L. Klein, and R. W. Impey, J. Chem. Phys. 89, 3248 (1988).
http://dx.doi.org/10.1063/1.454929
77.
77. H. Berendsen, J. P. M. Postma, W. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981), p. 331.
78.
78. M. Sprik, R. W. Impey, and M. L. Klein, J. Stat. Phys. 43, 967 (1986).
http://dx.doi.org/10.1007/BF02628323
79.
79. R. W. Shaw, Phys. Rev. 174, 769 (1968).
http://dx.doi.org/10.1103/PhysRev.174.769
80.
80. C. L. Brooks, B. M. Pettitt, and M. Karplus, J. Chem. Phys. 83, 5897 (1985).
http://dx.doi.org/10.1063/1.449621
81.
81. W. Smith and T. R. Forester, J. Mol. Graph. 14, 136 (1996).
http://dx.doi.org/10.1016/S0263-7855(96)00043-4
82.
82. L. Verlet, Phys. Rev. 159, 98 (1967).
http://dx.doi.org/10.1103/PhysRev.159.98
83.
83. H. C. Andersen, J. Comput. Phys. 52, 24 (1983).
http://dx.doi.org/10.1016/0021-9991(83)90014-1
84.
84. G. King and A. Warshel, J. Chem. Phys. 93, 8682 (1990).
http://dx.doi.org/10.1063/1.459255
85.
85. S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992).
http://dx.doi.org/10.1002/jcc.540130812
86.
86. S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, J. Comput. Chem. 16, 1339 (1995).
http://dx.doi.org/10.1002/jcc.540161104
87.
87. B. Deraedt, M. Sprik, and M. L. Klein, J. Chem. Phys. 80, 5719 (1984).
http://dx.doi.org/10.1063/1.446641
88.
88. F. Webster, P. J. Rossky, and R. A. Friesner, Comput. Phys. Commun. 63, 494 (1991).
http://dx.doi.org/10.1016/0010-4655(91)90272-M
89.
89. M. Marchi and D. Chandler, J. Chem. Phys. 95, 889 (1991).
http://dx.doi.org/10.1063/1.461096
90.
90. S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, J. Chem. Phys. 129, 074501 (2008).
http://dx.doi.org/10.1063/1.2968555
91.
91. T. D. Hone, P. J. Rossky, and G. A. Voth, J. Chem. Phys. 124, 154103 (2006).
http://dx.doi.org/10.1063/1.2186636
92.
92. E. Weinan, W. Q. Ren, and E. Vanden-Eijnden, J. Chem. Phys. 126, 164103 (2007).
http://dx.doi.org/10.1063/1.2720838
93.
93. D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).
http://dx.doi.org/10.1063/1.462100
94.
94. R. E. Cline and P. G. Wolynes, J. Chem. Phys. 88, 4334 (1988).
http://dx.doi.org/10.1063/1.453793
95.
95. D. Chandler, in Liquids, Freezing and Glass Transition, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991), p. 193.
96.
96. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
http://dx.doi.org/10.1103/RevModPhys.67.279
97.
97. Additional calculations performed using the RAW formulation of SCI theory (see Refs. 51 and 63) were found to be fully consistent with the SCI results in Fig. 5(a), but less numerically stable in the deep-tunneling regime considered here.
98.
98. S. Jang and G. A. Voth, J. Chem. Phys. 111, 2371 (1999).
http://dx.doi.org/10.1063/1.479515
99.
99. S. Jang and G. A. Voth, J. Chem. Phys. 112, 8747 (2000).
http://dx.doi.org/10.1063/1.481490
100.
100. W. Hontscha, P. Hanggi, and E. Pollak, Phys. Rev. B 41, 2210 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.2210
101.
101. J. J. Sakurai and S. F. Tuan, Modern Quantum Mechanics (Addison-Wesley, Reading, MA, 1994).
102.
102. D. Egorova and W. Domcke, J. Photochem. Photobiol., A 166, 19 (2004).
http://dx.doi.org/10.1016/j.jphotochem.2004.04.034
103.
103. D. Egorova, M. Thoss, W. Domcke, and H. B. Wang, J. Chem. Phys. 119, 2761 (2003).
http://dx.doi.org/10.1063/1.1587121
104.
104. J. R. Klauder, Ann. Phys. 254, 419 (1997).
http://dx.doi.org/10.1006/aphy.1996.5647
105.
105. R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.599
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/7/10.1063/1.3624766
Loading
/content/aip/journal/jcp/135/7/10.1063/1.3624766
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/7/10.1063/1.3624766
2011-08-17
2014-11-21

Abstract

The use of ring polymer molecular dynamics (RPMD) for the direct simulation of electron transfer(ET)reactiondynamics is analyzed in the context of Marcus theory, semiclassical instanton theory, and exact quantum dynamics approaches. For both fully atomistic and system-bath representations of condensed-phase ET, we demonstrate that RPMD accurately predicts both ETreaction rates and mechanisms throughout the normal and activationless regimes of the thermodynamic driving force. Analysis of the ensemble of reactive RPMD trajectories reveals the solvent reorganization mechanism for ET that is anticipated in the Marcus rate theory, and the accuracy of the RPMD rate calculation is understood in terms of its exact description of statistical fluctuations and its formal connection to semiclassical instanton theory for deep-tunneling processes. In the inverted regime of the thermodynamic driving force, neither RPMD nor a related formulation of semiclassical instanton theory capture the characteristic turnover in the reaction rate; comparison with exact quantum dynamics simulations reveals that these methods provide inadequate quantization of the real-time electronic-state dynamics in the inverted regime.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/7/1.3624766.html;jsessionid=2td2ubo9wvf25.x-aip-live-06?itemId=/content/aip/journal/jcp/135/7/10.1063/1.3624766&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Direct simulation of electron transfer using ring polymer molecular dynamics: Comparison with semiclassical instanton theory and exact quantum methods
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/7/10.1063/1.3624766
10.1063/1.3624766
SEARCH_EXPAND_ITEM