1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Temperature and scattering contrast dependencies of thickness fluctuations in surfactant membranes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/7/10.1063/1.3625434
1.
1.S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, Reading, MA, 1994).
2.
2.M. Kahlweit, R. Strey, D. Haase, H. Kunieda, T. Schmeling, B. Faulhaber, M. Borkovec, H.-F. Eicke, G. Busse, F. Eggers, T. Funck, H. Richmann, L. Magid, O. Söderman, P. Stilbs, J. Winklwer, A. Dittrich, and W. Jahn, J. Colloid Interface Sci. 118, 436 (1987).
http://dx.doi.org/10.1016/0021-9797(87)90480-2
3.
3.U. Olsson, U. Würz, and R. Strey, J. Phys. Chem. 97, 4535 (1993).
http://dx.doi.org/10.1021/j100119a047
4.
4.A. Singh, J. D. Van Hamme, and O. P. Ward, Biotechnol. Adv. 25, 99 (2007).
http://dx.doi.org/10.1016/j.biotechadv.2006.10.004
5.
5.W. Helfrich, Z. Naturforsch. 28c, 693 (1973).
6.
6.F. Nallet, D. Roux, and J. Prost, J. Phys. (France) 50, 3147 (1989).
http://dx.doi.org/10.1051/jphys:0198900500200314700
7.
7.J. N. Israelachvili and H. Wennerströem, Langmuir 6, 873 (1990).
http://dx.doi.org/10.1021/la00094a028
8.
8.B. Farago, D. Richter, J. S. Huang, S. A. Safran, and S. T. Milner, Phys. Rev. Lett. 65, 3348 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.3348
9.
9.J. N. Israelachvili and H. Wennerströem, J. Chem. Phys. 96, 520 (1992).
http://dx.doi.org/10.1021/j100181a007
10.
10.E. Freyssingeas, F. Nallet, and D. Roux, Langmuir 12, 6028 (1996).
http://dx.doi.org/10.1021/la9605246
11.
11.C. H. Lee, W. C. Lin, and J. Wang, Phys. Rev. E 64, 020901R (2001).
http://dx.doi.org/10.1103/PhysRevE.64.020901
12.
12.L. R. Arriaga, I. Lopez-Montero, F. Monroy, G. Orts-Gil, B. Farago, and T. Hellweg, Biophys. J. 96, 3629 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.01.045
13.
13.R. C. Haskell, D. C. Petersen, and M. W. Johnson, Phys. Rev. E 47, 439 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.439
14.
14.B. Farago, M. Monkenbusch, K. Goecking, D. Richter, and J. Huang, Physica B 213– 214, 712 (1995).
http://dx.doi.org/10.1016/0921-4526(95)00257-A
15.
15.B. Farago, Physica B 226, 51 (1996).
http://dx.doi.org/10.1016/0921-4526(96)00247-5
16.
16.M. Nagao, Phys. Rev. E 80, 031606 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.031606
17.
17.M. Nagao, S. Chawang, and T. Hawa, Soft Matter 7, 6598 (2011).
http://dx.doi.org/10.1039/C1SM05477E
18.
18.E. Lindahl and O. Edholm, Biophys. J. 79, 426 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76304-1
19.
19.N. Gov, Phys. Rev. Lett. 93, 268104 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.268104
20.
20.G. Brannigan and F. L. H. Brown, Biophys. J. 79, 426 (2006).
http://dx.doi.org/10.1529/biophysj.105.075838
21.
21.E. G. Brandt and O. Edholm, J. Chem. Phys. 133, 115101 (2010).
http://dx.doi.org/10.1063/1.3478998
22.
22.M. Nagao, H. Seto, D. Ihara, M. Shibayama, and T. Takeda, J. Chem. Phys. 123, 054705 (2005).
http://dx.doi.org/10.1063/1.1993559
23.
23.M. Leaver, V. Rajagopalan, U. Olsson, and K. Mortensen, Phys. Chem. Chem. Phys. 2, 2951 (2000).
http://dx.doi.org/10.1039/b001219j
24.
24.C. J. Glinka, J. G. Barker, B. Hammouda, S. Krueger, J. J. Moyer, and W. J. Orts, J. Appl. Crystallogr. 31, 430 (1998).
http://dx.doi.org/10.1107/S0021889897017020
25.
25.S.-M. Choi, J. G. Barker, C. J. Glinka, Y. T. Cheng, and P. L. Gammel, J. Appl. Crystallogr. 33, 793 (2000).
http://dx.doi.org/10.1107/S0021889800099799
26.
26.S. R. Kline, J. Appl. Crystallogr. 39, 895 (2006).
http://dx.doi.org/10.1107/S0021889806035059
27.
27.N. Rosov, S. Rathgeber, and M. Monkenbusch, Scattering from Polymers: Characterization by x-rays, Neutrons, and Light, Vol. 739 (ACS Symposium Series, 2000) p. 103.
28.
28.M. Monkenbusch, R. Schäzler, and D. Richter, Nucl. Instrum. Methods Phys. Res. A 399, 301 (1997).
http://dx.doi.org/10.1016/S0168-9002(97)00956-X
29.
29.R. T. Azuah, L. R. Kneller, Y. Qiu, P. L. W. Tregenna-Piggott, C. M. Brown, J. R. D. Copley, and R. M. Dimeo, J. Res. Natl. Inst. Stand. Technol. 114, 341 (2009).
30.
30.M. Shibayama, T. Matsunaga, and M. Nagao, J. Appl. Crystallogr. 42, 621 (2009).
http://dx.doi.org/10.1107/S0021889809022456
31.
31.J. Lemmich, K. Mortensen, J. H. Ipsen, T. Honger, R. Bauer, and O. G. Mouritsen, Phys. Rev. E 53, 5169 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.5169
32.
32.A. G. Zilman and R. Granek, Phys. Rev. Lett. 77, 4788 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.4788
33.
33.A. G. Zilman and R. Granek, Chem. Phys. 284, 195 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00548-7
34.
34.C. Gutt, T. Ghaderi, V. Chamard, A. Madsen, T. Seydel, M. Tolan, M. Sprung, G. Grübel, and S. K. Sinha, Phys. Rev. Lett. 91, 076104 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.076104
35.
35.S. Komura, T. Takeda, Y. Kawabata, S. K. Ghosh, H. Seto, and M. Nagao, Phys. Rev. E 63, 041402 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.041402
36.
36.M. Mihailescu, M. Monkenbusch, J. Allgaier, H. Frielinghaus, D. Richter, B. Jakobs, and T. Sottmann, Phys. Rev. E 66, 041504 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.041504
37.
37.M. C. Watson and F. L. H. Brown, Biophys. J. 98, L09 (2010).
http://dx.doi.org/10.1016/j.bpj.2009.11.026
38.
38.J.-H. Lee, S.-M. Choi, C. Doe, A. Faraone, P. A. Pincus, and S. R. Kline, Phys. Rev. Lett. 105, 038101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.038101
39.
39.A. Vrij, J. G. H. Joosten, and H. M. Fijnaut, Adv. Chem. Phys. 48, 329 (1981).
http://dx.doi.org/10.1002/SERIES2007
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/7/10.1063/1.3625434
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Observed SANS profiles for both bulk and film contrast conditions. The incoherent scattering intensities are already subtracted. The inset highlights the high q range from 0.5 nm−1 to 2.2 nm−1. The vertical lines in the inset indicate the peak positions originating from thickness fluctuations observed by NSE. Error bars represent ± one standard deviation throughout the paper.

Image of FIG. 2.

Click to view

FIG. 2.

Temperature dependence of the surfactant layer thickness d s for different scattering contrast.

Image of FIG. 3.

Click to view

FIG. 3.

Observed intermediate scattering functions for different scattering contrasts at T = 30 °C. Solid and open symbols represent the bulk and film contrast samples, respectively. The lines are the results of fit to Eq. (1).

Image of FIG. 4.

Click to view

FIG. 4.

q-dependence of the relaxation rate Γ observed by NSE. The dashed straight line indicates the q 3 dependence of Γ modeled as single membrane fluctuation. The inset shows the q-dependence of Γ/q 3. The lines in the inset are fit results according to Eq. (2).

Image of FIG. 5.

Click to view

FIG. 5.

I(q, t)/I(q, 0) at T = 30 °C and q = 1.23 nm−1. No oscillation is observed, indicating no propagation motion in the observed time range. The solid and dotted lines are the results of fit to Eqs. (1) and (3), respectively.

Image of FIG. 6.

Click to view

FIG. 6.

Temperature dependence of the SANS profile. The system is in the lamellar phase between 30 °C and 20 °C. Below 18 °C, the SANS profile shows the formation of the oil-in-water cylindrical micellar structure. Error bars are smaller than the symbols.

Image of FIG. 7.

Click to view

FIG. 7.

Temperature variation of Γ/q 3. The values of both the peak height and the base line decrease with decreasing temperature keeping the peak position constant. The lines are the fit results according to Eq. (2).

Image of FIG. 8.

Click to view

FIG. 8.

Temperature dependencies of the bending modulus κ and the thickness fluctuation amplitude d mξ−1/q 0. The values of κ and d mξ−1/q 0 are almost independent of temperature.

Image of FIG. 9.

Click to view

FIG. 9.

Temperature dependence of and N(T) = ηΓTF. When oil viscosity is used as η, N(T) becomes flat at low temperature, while this is not the case when water viscosity is used as η.

Tables

Generic image for table

Click to view

Table I.

Estimated dynamic structure parameters for different scattering contrasts from the fit of Γ/q 3 to Eq. (2).

Loading

Article metrics loading...

/content/aip/journal/jcp/135/7/10.1063/1.3625434
2011-08-19
2014-04-24

Abstract

Temperature and scattering contrast dependencies of thickness fluctuations have been investigated using neutron spin echo spectroscopy in a swollen lamellar phase composed of nonionic surfactant, water, and oil. In the present study, two contrast conditions are examined; one is the bulk contrast, which probes two surfactantmonolayers with an oil layer as a membrane, and the other is the film contrast, which emphasizes an individual surfactantmonolayer. The thickness fluctuations enhance dynamics from the bending fluctuations, and are observed in a similar manner in both contrast conditions. Thickness fluctuations can be investigated regardless of the scattering contrast, though film contrasts are better to be employed in terms of the data quality. The thickness fluctuation amplitude is constant over the measuredtemperature range, including in the vicinity of the phase boundary between the lamellar and micellar phases at low temperature and the boundary between the lamellar and bicontinuous phases at high temperature. The damping frequency of the thickness fluctuations is well scaled using viscosity within the membranes at low temperature, which indicates the thickness fluctuations are predominantly controlled by the viscosity within the membrane. On the other hand, in the vicinity of the phase boundary at high temperature, thickness fluctuations become faster without changing the mode amplitude.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/7/1.3625434.html;jsessionid=4gpg93j1ud7lv.x-aip-live-03?itemId=/content/aip/journal/jcp/135/7/10.1063/1.3625434&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Temperature and scattering contrast dependencies of thickness fluctuations in surfactant membranes
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/7/10.1063/1.3625434
10.1063/1.3625434
SEARCH_EXPAND_ITEM