Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, Reading, MA, 1994).
2.M. Kahlweit, R. Strey, D. Haase, H. Kunieda, T. Schmeling, B. Faulhaber, M. Borkovec, H.-F. Eicke, G. Busse, F. Eggers, T. Funck, H. Richmann, L. Magid, O. Söderman, P. Stilbs, J. Winklwer, A. Dittrich, and W. Jahn, J. Colloid Interface Sci. 118, 436 (1987).
3.U. Olsson, U. Würz, and R. Strey, J. Phys. Chem. 97, 4535 (1993).
4.A. Singh, J. D. Van Hamme, and O. P. Ward, Biotechnol. Adv. 25, 99 (2007).
5.W. Helfrich, Z. Naturforsch. 28c, 693 (1973).
6.F. Nallet, D. Roux, and J. Prost, J. Phys. (France) 50, 3147 (1989).
7.J. N. Israelachvili and H. Wennerströem, Langmuir 6, 873 (1990).
8.B. Farago, D. Richter, J. S. Huang, S. A. Safran, and S. T. Milner, Phys. Rev. Lett. 65, 3348 (1990).
9.J. N. Israelachvili and H. Wennerströem, J. Chem. Phys. 96, 520 (1992).
10.E. Freyssingeas, F. Nallet, and D. Roux, Langmuir 12, 6028 (1996).
11.C. H. Lee, W. C. Lin, and J. Wang, Phys. Rev. E 64, 020901R (2001).
12.L. R. Arriaga, I. Lopez-Montero, F. Monroy, G. Orts-Gil, B. Farago, and T. Hellweg, Biophys. J. 96, 3629 (2009).
13.R. C. Haskell, D. C. Petersen, and M. W. Johnson, Phys. Rev. E 47, 439 (1993).
14.B. Farago, M. Monkenbusch, K. Goecking, D. Richter, and J. Huang, Physica B 213– 214, 712 (1995).
15.B. Farago, Physica B 226, 51 (1996).
16.M. Nagao, Phys. Rev. E 80, 031606 (2009).
17.M. Nagao, S. Chawang, and T. Hawa, Soft Matter 7, 6598 (2011).
18.E. Lindahl and O. Edholm, Biophys. J. 79, 426 (2000).
19.N. Gov, Phys. Rev. Lett. 93, 268104 (2004).
20.G. Brannigan and F. L. H. Brown, Biophys. J. 79, 426 (2006).
21.E. G. Brandt and O. Edholm, J. Chem. Phys. 133, 115101 (2010).
22.M. Nagao, H. Seto, D. Ihara, M. Shibayama, and T. Takeda, J. Chem. Phys. 123, 054705 (2005).
23.M. Leaver, V. Rajagopalan, U. Olsson, and K. Mortensen, Phys. Chem. Chem. Phys. 2, 2951 (2000).
24.C. J. Glinka, J. G. Barker, B. Hammouda, S. Krueger, J. J. Moyer, and W. J. Orts, J. Appl. Crystallogr. 31, 430 (1998).
25.S.-M. Choi, J. G. Barker, C. J. Glinka, Y. T. Cheng, and P. L. Gammel, J. Appl. Crystallogr. 33, 793 (2000).
26.S. R. Kline, J. Appl. Crystallogr. 39, 895 (2006).
27.N. Rosov, S. Rathgeber, and M. Monkenbusch, Scattering from Polymers: Characterization by x-rays, Neutrons, and Light, Vol. 739 (ACS Symposium Series, 2000) p. 103.
28.M. Monkenbusch, R. Schäzler, and D. Richter, Nucl. Instrum. Methods Phys. Res. A 399, 301 (1997).
29.R. T. Azuah, L. R. Kneller, Y. Qiu, P. L. W. Tregenna-Piggott, C. M. Brown, J. R. D. Copley, and R. M. Dimeo, J. Res. Natl. Inst. Stand. Technol. 114, 341 (2009).
30.M. Shibayama, T. Matsunaga, and M. Nagao, J. Appl. Crystallogr. 42, 621 (2009).
31.J. Lemmich, K. Mortensen, J. H. Ipsen, T. Honger, R. Bauer, and O. G. Mouritsen, Phys. Rev. E 53, 5169 (1996).
32.A. G. Zilman and R. Granek, Phys. Rev. Lett. 77, 4788 (1996).
33.A. G. Zilman and R. Granek, Chem. Phys. 284, 195 (2002).
34.C. Gutt, T. Ghaderi, V. Chamard, A. Madsen, T. Seydel, M. Tolan, M. Sprung, G. Grübel, and S. K. Sinha, Phys. Rev. Lett. 91, 076104 (2003).
35.S. Komura, T. Takeda, Y. Kawabata, S. K. Ghosh, H. Seto, and M. Nagao, Phys. Rev. E 63, 041402 (2001).
36.M. Mihailescu, M. Monkenbusch, J. Allgaier, H. Frielinghaus, D. Richter, B. Jakobs, and T. Sottmann, Phys. Rev. E 66, 041504 (2002).
37.M. C. Watson and F. L. H. Brown, Biophys. J. 98, L09 (2010).
38.J.-H. Lee, S.-M. Choi, C. Doe, A. Faraone, P. A. Pincus, and S. R. Kline, Phys. Rev. Lett. 105, 038101 (2010).
39.A. Vrij, J. G. H. Joosten, and H. M. Fijnaut, Adv. Chem. Phys. 48, 329 (1981).

Data & Media loading...


Article metrics loading...



Temperature and scattering contrast dependencies of thickness fluctuations have been investigated using neutron spin echo spectroscopy in a swollen lamellar phase composed of nonionic surfactant, water, and oil. In the present study, two contrast conditions are examined; one is the bulk contrast, which probes two surfactantmonolayers with an oil layer as a membrane, and the other is the film contrast, which emphasizes an individual surfactantmonolayer. The thickness fluctuations enhance dynamics from the bending fluctuations, and are observed in a similar manner in both contrast conditions. Thickness fluctuations can be investigated regardless of the scattering contrast, though film contrasts are better to be employed in terms of the data quality. The thickness fluctuation amplitude is constant over the measuredtemperature range, including in the vicinity of the phase boundary between the lamellar and micellar phases at low temperature and the boundary between the lamellar and bicontinuous phases at high temperature. The damping frequency of the thickness fluctuations is well scaled using viscosity within the membranes at low temperature, which indicates the thickness fluctuations are predominantly controlled by the viscosity within the membrane. On the other hand, in the vicinity of the phase boundary at high temperature, thickness fluctuations become faster without changing the mode amplitude.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd