1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Configuration interaction singles has a large systematic bias against charge-transfer states
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/7/10.1063/1.3627152
1.
1. M. Head-Gordon, A. M. Grana, D. Maurice, and C. A. White, J. Phys. Chem. 99, 14261 (1995).
http://dx.doi.org/10.1021/j100039a012
2.
2. A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).
http://dx.doi.org/10.1063/1.1590951
3.
3. L. Goerigk and S. Grimme, J. Chem. Phys. 132, 184103 (2010).
http://dx.doi.org/10.1063/1.3418614
4.
4. M. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995), Vol. 1, pp. 155192.
5.
5. A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004).
http://dx.doi.org/10.1021/ja039556n
6.
6. R. J. Magyar and S. Tretiak, J. Chem. Theory Comput. 3, 976 (2007).
http://dx.doi.org/10.1021/ct600282k
7.
7. J. Neugebauer, M. J. Louwerse, E. J. Baerends, and T. A. Wesolowski, J. Chem. Phys. 122, 094115 (2005).
http://dx.doi.org/10.1063/1.1858411
8.
8. A. W. Lange and J. M. Herbert, J. Chem. Theory Comput. 3, 1680 (2007).
http://dx.doi.org/10.1021/ct700125v
9.
9. L. Bernasconi, M. Sprik, and J. Hutter, J. Chem. Phys. 119, 12417 (2003).
http://dx.doi.org/10.1063/1.1625633
10.
10. A. Hesselmann, A. Ipatov, and A. Görling, Phys. Rev. A 80, 012507 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.012507
11.
11. N. T. Maitra and D. Tempel, J. Chem. Phys. 125, 184111 (2006).
http://dx.doi.org/10.1063/1.2387951
12.
12. A. Savin, in Recent Advances in Density Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995), pp. 129154.
13.
13. A. Savin and H. J. Flad, Int. J. Quantum Chem. 56, 327 (1995).
http://dx.doi.org/10.1002/qua.560560417
14.
14. P. M. W. Gill, R. D. Adamson, and J. A. Pople, Mol. Phys. 88, 1005 (1996).
http://dx.doi.org/10.1080/00268979609484488
15.
15. H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 120, 8425 (2004).
http://dx.doi.org/10.1063/1.1688752
16.
16. J. W. Song, T. Hirosawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 126, 154105 (2007).
http://dx.doi.org/10.1063/1.2721532
17.
17. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
18.
18. O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006).
http://dx.doi.org/10.1063/1.2409292
19.
19. T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008).
http://dx.doi.org/10.1063/1.2921797
20.
20. J. D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008).
http://dx.doi.org/10.1063/1.2834918
21.
21. M. A. Rohrdanz and J. M. Herbert, J. Chem. Phys. 129, 034107 (2008).
http://dx.doi.org/10.1063/1.2954017
22.
22. M. A. Rohrdanz, K. M. Martins, and J. M. Herbert, J. Chem. Phys. 130, 054112 (2009).
http://dx.doi.org/10.1063/1.3073302
23.
23. A. W. Lange, M. A. Rohrdanz, and J. M. Herbert, J. Phys. Chem. B 112, 6304 (2008).
http://dx.doi.org/10.1021/jp802058k
24.
24. R. Baer, E. Livshits, and U. Salzner, Annu. Rev. Phys. Chem. 61, 85 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103321
25.
25. M. J. G. Peach, P. Benfield, T. Helgaker, and D. J. Tozer, J. Chem. Phys. 128, 044118 (2008).
http://dx.doi.org/10.1063/1.2831900
26.
26. P. Wiggins, J. A. G. Williams, and D. J. Tozer, J. Chem. Phys. 131, 091101 (2009).
http://dx.doi.org/10.1063/1.3222641
27.
27. R. M. Richard and J. M. Herbert, J. Chem. Theory Comput. 7, 1296 (2011).
http://dx.doi.org/10.1021/ct100607w
28.
28. M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chem. Phys. Lett. 219, 21 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00070-0
29.
29. M. Head-Gordon, A. M. Grana, D. Maurice, and C. A. White, J. Phys. Chem. 99, 14261 (1995).
http://dx.doi.org/10.1021/j100039a012
30.
30. A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093602
31.
31. J. W. Ponder, TINKER–Software Tools for Molecular Design, version 5.0, Washington University School of Medicine, Saint Louis, MO, 2009, http://dasher.wustl.edu/tinker.
32.
32. P. Pasman, F. Rob, and J. W. Verhoeven, J. Am. Chem. Soc. 104, 5127 (1982).
http://dx.doi.org/10.1021/ja00383a023
33.
33. M. Bixon, J. Jortner, and J. W. Verhoeven, J. Am. Chem. Soc. 16, 7349 (1994).
http://dx.doi.org/10.1021/ja00095a044
34.
34. Y. M. Rhee and M. Head-Gordon, J. Phys. Chem. A 111, 5314 (2007).
http://dx.doi.org/10.1021/jp068409j
35.
35. J. Plotner, D. J. Tozer, and A. Dreuw, J. Chem. Theory Comput. 6, 2315 (2010).
http://dx.doi.org/10.1021/ct1001973
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/7/10.1063/1.3627152
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

A scatter plot of the CIS error versus the attachment-detachment Coulombic attraction (ζ, Eq. (1)) for 500 nuclear geometries (a) is for water dimers (15 states), (b) is for water trimers (25 states), and (c) is for water tetramers (35 states).

Image of FIG. 2.

Click to view

FIG. 2.

(a) A scatter plot of ΔE versus the magnitude of the relative dipole moment, for the molecule shown in (b). The formal name for this molecule is 2-(4-(propan-2-ylidene)cyclohexylidene)malononitrile, abbreviated here as PYCM. For each of 500 nuclear geometries, we plot the first 10 electronic states.

Image of FIG. 3.

Click to view

FIG. 3.

(a) CIS and (b) ΔE curves for the He2 dimer separated by a distance r in a VDZ basis (with an external charge far away to break symmetry). In order to prove that these results are not an artifact of the CIS(D) correction, in (c) and (d), we plot the energies of states S 1 and S 4 for EOM-CCSD and our results are nearly unchanged. Note how much more inaccurate CIS energies are for CT states S 3, S 4 compared with non-CT states S 1, S 2. For CT states, , so that for small r, (b) reflects the same physics as in Fig. 2.

Loading

Article metrics loading...

/content/aip/journal/jcp/135/7/10.1063/1.3627152
2011-08-18
2014-04-25

Abstract

We show that standard configuration interaction singles (CIS) has a systematic bias against charge-transfer(CT) states, wherein the computed vertical excitation energies for CT states are disproportionately too high (by >1 eV) as compared with non-CT states. We demonstrate this bias empirically for a set of chemical problems with both inter- and intra-molecular electron transfer, and then, for a small analytical model, we prove that this large difference in accuracy stems from the massive changes in electronic structure that must accompany long-range charge transfer. Thus far, the conclusion from this research is that, even in the context of wave functiontheory,CIS alone is insufficient for offering a balanced description of excited state surfaces (both CT and non-CT) and explicit electron-electron correlation must be included additionally (e.g., via CIS(D)) for charge-transfer applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/7/1.3627152.html;jsessionid=285la8kf828r9.x-aip-live-01?itemId=/content/aip/journal/jcp/135/7/10.1063/1.3627152&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Configuration interaction singles has a large systematic bias against charge-transfer states
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/7/10.1063/1.3627152
10.1063/1.3627152
SEARCH_EXPAND_ITEM