1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Uncovering molecule-TiO2 interactions with nonlinear spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/8/10.1063/1.3631339
1.
1. J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. M. Iha, J. L. Templeton, and T. J. Meyer, Acc. Chem. Res. 42, 1954 (2009).
http://dx.doi.org/10.1021/ar9001526
2.
2. M. Grätzel, Nature (London) 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
3.
3. S. Ardo and G. J. Meyer, Chem. Soc. Rev. 38, 115 (2009).
http://dx.doi.org/10.1039/b804321n
4.
4. N. A. Anderson and T. Lian, Annu. Rev. Phys. Chem. 56, 491 (2005).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094347
5.
5. W. R. Duncan and O. V. Prezhdo, Annu. Rev. Phys. Chem. 58, 143 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.052306.144054
6.
6. E. Jakubikova, R. C. Snoeberger III, V. S. Batista, R. L. Martin, and E. R. Batista, J. Phys. Chem. A 113, 12532 (2009).
http://dx.doi.org/10.1021/jp903966n
7.
7. S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, J. Phys. Chem. B 104, 538 (2000).
http://dx.doi.org/10.1021/jp991085x
8.
8. A. J. Morris-Cohen, M. T. Frederick, L. C. Cass, and E. A. Weiss, J. Am. Chem. Soc. 133, 10146 (2011).
http://dx.doi.org/10.1021/ja2010237
9.
9. A. J. Nozik, Annu. Rev. Phys. Chem. 52, 193 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.193
10.
10. A. Pandey and P. Guyot-Sionnest, J. Phys. Chem. Lett. 1, 45 (2010).
http://dx.doi.org/10.1021/jz900022z
11.
11. W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X.-Y. Zhu, Science 328, 1543 (2010).
http://dx.doi.org/10.1126/science.1185509
12.
12. A. Morandeira, G. Boschloo, A. Hagfeldt, and L. Hammarström, J. Phys. Chem. C 112, 9530 (2008).
http://dx.doi.org/10.1021/jp800760q
13.
13. W. Xiong, J. E. Laaser, P. Paoprasert, R. A. Franking, R. J. Hamers, P. Gopalan, and M. T. Zanni, J. Am. Chem. Soc. 131, 18040 (2009).
http://dx.doi.org/10.1021/ja908479r
14.
14. H. N. Ghosh, J. B. Asbury, and T. Lian, J. Phys. Chem. B 102, 6482 (1998).
http://dx.doi.org/10.1021/jp981806c
15.
15. J. B. Asbury, E. Hao, Y. Wang, H. N. Ghosh, and T. Lian, J. Phys. Chem. B 105, 4545 (2001).
http://dx.doi.org/10.1021/jp003485m
16.
16. R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
http://dx.doi.org/10.1063/1.1696792
17.
17. H. Gerischer, Surf. Sci. 18, 97 (1969).
http://dx.doi.org/10.1016/0039-6028(69)90269-6
18.
18. H. Gerischer, Photochem. Photobiol. 16, 243 (1972).
http://dx.doi.org/10.1111/j.1751-1097.1972.tb06296.x
19.
19. P. C. Redfern, P. Zapol, L. A. Curtiss, T. Rajh, and M. C. Thurnauer, J. Phys. Chem. B 107, 11419 (2003).
http://dx.doi.org/10.1021/jp0303669
20.
20. S.-H. A. Lee, N. M. Abrams, P. G. Hoertz, G. D. Barber, L. I. Halaoui, and T. E. Mallouk, J. Phys. Chem. B 112, 14415 (2008).
http://dx.doi.org/10.1021/jp802692u
21.
21. J. M. Womick, S. A. Miller, and A. M. Moran, J. Phys. Chem. A 113, 6587 (2009).
http://dx.doi.org/10.1021/jp811064z
22.
22. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
http://dx.doi.org/10.1364/JOSAB.12.002467
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.3631339 for descriptions of the experimental setup and sample preparation. [Supplementary Material]
24.
24. D. T. Cromer and K. Herrington, J. Am. Chem. Soc. 77, 4708 (1955).
http://dx.doi.org/10.1021/ja01623a004
25.
25. G. Silversmit, H. Poelman, L. Fiermans, and R. De Gryse, Solid State Commun. 119, 101 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00224-1
26.
26. C. Zimmerman, F. Willig, S. Ramakrishna, B. Burnfeindt, B. Pettinger, R. Eichberger, and W. Storck, J. Phys. Chem. B 105, 9245 (2001).
http://dx.doi.org/10.1021/jp011106z
27.
27. A. M. Kelley, J. Phys. Chem. A 103, 6891 (1999).
http://dx.doi.org/10.1021/jp991530o
28.
28. J.-S. Park and T. Joo, J. Chem. Phys. 120, 5269 (2004).
http://dx.doi.org/10.1063/1.1647534
29.
29. A. M. Moran, R. A. Nome, and N. F. Scherer, J. Chem. Phys. 125, 031101 (2006).
http://dx.doi.org/10.1063/1.2217940
30.
30. P. Vöehringer and N. F. Scherer, J. Phys. Chem. 99, 2684 (1995).
http://dx.doi.org/10.1021/j100009a027
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/8/10.1063/1.3631339
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Absorbance spectra of catechol in aqueous solution (red) and adsorbed to a TiO2 nanocrystalline film (blue). (b) Absorbance spectra of the ruthenium complex in aqueous solution (red) and adsorbed to a TiO2 nanocrystalline film (blue). The absorbance spectrum of a neat TiO2 film is displayed in both panels (black).

Image of FIG. 2.

Click to view

FIG. 2.

Absolute value of TG signals acquired under the ZXZX tensor element with “pump” (E 1 and E 2) and probe (E 3) pulses centered at 400 nm and 525 nm, respectively. Signals acquired for the molecule-TiO2 composites are fit with a red line, whereas those obtained for the neat TiO2 films are fit with a blue line. All samples including the neat TiO2 films are in aqueous solutions (cf. supplementary material) (Ref. 23). The inset of panel (a) illustrates the orientations of the four electric field polarizations involved in the ZXZX tensor element. Fitting components are given in Table I.

Image of FIG. 3.

Click to view

FIG. 3.

Absolute value of TG signals acquired under the ZXXZ tensor element for a neat TiO2 film with “pump” (E 1 and E 2) and probe (E 3) pulses centered at 400 nm and 525 nm, respectively. The inset illustrates the orientations of the four electric field polarizations involved in the ZXXZ tensor element. Fitting components are given in Table I. (b) Spontaneous Raman spectrum of the same TiO2 film obtained with an excitation wavelength of 633 nm. This measurement suggests that the vibrational coherence detected by TG is associated with the ground electronic state.

Image of FIG. 4.

Click to view

FIG. 4.

The amplitude of the vibrational coherence in the ∼142 cm−1 mode increases with the displacement in the potential energy minima associated with the ground and excited electronic states, Δ. We assign the vibrational motions detected in this work to the ground electronic states of the composite molecule-TiO2 systems.

Tables

Generic image for table

Click to view

Table I.

Transient grating fitting parameters.

Loading

Article metrics loading...

/content/aip/journal/jcp/135/8/10.1063/1.3631339
2011-08-22
2014-04-17

Abstract

Femtosecond transient grating experiments are used to investigate electronic structures and transport mechanisms in dye-sensitized nanocrystalline TiO2 films. This study examines two molecular sensitizers spanning the weak (a phosphonated Ruthenium complex) and strong (catechol) molecule-TiO2 coupling regimes. It is shown that strong molecule-TiO2 interactions give rise to photoinduced vibrational coherences at the interface between species. We suggest that the amplitudes of these coherences reflect the molecule-TiO2 coupling strength and signify the delocalization of excited statewavefunctions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/8/1.3631339.html;jsessionid=2aikmgluaiqdv.x-aip-live-03?itemId=/content/aip/journal/jcp/135/8/10.1063/1.3631339&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Uncovering molecule-TiO2 interactions with nonlinear spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/8/10.1063/1.3631339
10.1063/1.3631339
SEARCH_EXPAND_ITEM