1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Uncovering molecule-TiO2 interactions with nonlinear spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/8/10.1063/1.3631339
1.
1. J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. M. Iha, J. L. Templeton, and T. J. Meyer, Acc. Chem. Res. 42, 1954 (2009).
http://dx.doi.org/10.1021/ar9001526
2.
2. M. Grätzel, Nature (London) 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
3.
3. S. Ardo and G. J. Meyer, Chem. Soc. Rev. 38, 115 (2009).
http://dx.doi.org/10.1039/b804321n
4.
4. N. A. Anderson and T. Lian, Annu. Rev. Phys. Chem. 56, 491 (2005).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094347
5.
5. W. R. Duncan and O. V. Prezhdo, Annu. Rev. Phys. Chem. 58, 143 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.052306.144054
6.
6. E. Jakubikova, R. C. Snoeberger III, V. S. Batista, R. L. Martin, and E. R. Batista, J. Phys. Chem. A 113, 12532 (2009).
http://dx.doi.org/10.1021/jp903966n
7.
7. S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, J. Phys. Chem. B 104, 538 (2000).
http://dx.doi.org/10.1021/jp991085x
8.
8. A. J. Morris-Cohen, M. T. Frederick, L. C. Cass, and E. A. Weiss, J. Am. Chem. Soc. 133, 10146 (2011).
http://dx.doi.org/10.1021/ja2010237
9.
9. A. J. Nozik, Annu. Rev. Phys. Chem. 52, 193 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.193
10.
10. A. Pandey and P. Guyot-Sionnest, J. Phys. Chem. Lett. 1, 45 (2010).
http://dx.doi.org/10.1021/jz900022z
11.
11. W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X.-Y. Zhu, Science 328, 1543 (2010).
http://dx.doi.org/10.1126/science.1185509
12.
12. A. Morandeira, G. Boschloo, A. Hagfeldt, and L. Hammarström, J. Phys. Chem. C 112, 9530 (2008).
http://dx.doi.org/10.1021/jp800760q
13.
13. W. Xiong, J. E. Laaser, P. Paoprasert, R. A. Franking, R. J. Hamers, P. Gopalan, and M. T. Zanni, J. Am. Chem. Soc. 131, 18040 (2009).
http://dx.doi.org/10.1021/ja908479r
14.
14. H. N. Ghosh, J. B. Asbury, and T. Lian, J. Phys. Chem. B 102, 6482 (1998).
http://dx.doi.org/10.1021/jp981806c
15.
15. J. B. Asbury, E. Hao, Y. Wang, H. N. Ghosh, and T. Lian, J. Phys. Chem. B 105, 4545 (2001).
http://dx.doi.org/10.1021/jp003485m
16.
16. R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
http://dx.doi.org/10.1063/1.1696792
17.
17. H. Gerischer, Surf. Sci. 18, 97 (1969).
http://dx.doi.org/10.1016/0039-6028(69)90269-6
18.
18. H. Gerischer, Photochem. Photobiol. 16, 243 (1972).
http://dx.doi.org/10.1111/j.1751-1097.1972.tb06296.x
19.
19. P. C. Redfern, P. Zapol, L. A. Curtiss, T. Rajh, and M. C. Thurnauer, J. Phys. Chem. B 107, 11419 (2003).
http://dx.doi.org/10.1021/jp0303669
20.
20. S.-H. A. Lee, N. M. Abrams, P. G. Hoertz, G. D. Barber, L. I. Halaoui, and T. E. Mallouk, J. Phys. Chem. B 112, 14415 (2008).
http://dx.doi.org/10.1021/jp802692u
21.
21. J. M. Womick, S. A. Miller, and A. M. Moran, J. Phys. Chem. A 113, 6587 (2009).
http://dx.doi.org/10.1021/jp811064z
22.
22. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
http://dx.doi.org/10.1364/JOSAB.12.002467
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.3631339 for descriptions of the experimental setup and sample preparation. [Supplementary Material]
24.
24. D. T. Cromer and K. Herrington, J. Am. Chem. Soc. 77, 4708 (1955).
http://dx.doi.org/10.1021/ja01623a004
25.
25. G. Silversmit, H. Poelman, L. Fiermans, and R. De Gryse, Solid State Commun. 119, 101 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00224-1
26.
26. C. Zimmerman, F. Willig, S. Ramakrishna, B. Burnfeindt, B. Pettinger, R. Eichberger, and W. Storck, J. Phys. Chem. B 105, 9245 (2001).
http://dx.doi.org/10.1021/jp011106z
27.
27. A. M. Kelley, J. Phys. Chem. A 103, 6891 (1999).
http://dx.doi.org/10.1021/jp991530o
28.
28. J.-S. Park and T. Joo, J. Chem. Phys. 120, 5269 (2004).
http://dx.doi.org/10.1063/1.1647534
29.
29. A. M. Moran, R. A. Nome, and N. F. Scherer, J. Chem. Phys. 125, 031101 (2006).
http://dx.doi.org/10.1063/1.2217940
30.
30. P. Vöehringer and N. F. Scherer, J. Phys. Chem. 99, 2684 (1995).
http://dx.doi.org/10.1021/j100009a027
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/8/10.1063/1.3631339
Loading
/content/aip/journal/jcp/135/8/10.1063/1.3631339
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/8/10.1063/1.3631339
2011-08-22
2014-09-22

Abstract

Femtosecond transient grating experiments are used to investigate electronic structures and transport mechanisms in dye-sensitized nanocrystalline TiO2 films. This study examines two molecular sensitizers spanning the weak (a phosphonated Ruthenium complex) and strong (catechol) molecule-TiO2 coupling regimes. It is shown that strong molecule-TiO2 interactions give rise to photoinduced vibrational coherences at the interface between species. We suggest that the amplitudes of these coherences reflect the molecule-TiO2 coupling strength and signify the delocalization of excited statewavefunctions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/8/1.3631339.html;jsessionid=1p0f9z3sob9by.x-aip-live-02?itemId=/content/aip/journal/jcp/135/8/10.1063/1.3631339&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Uncovering molecule-TiO2 interactions with nonlinear spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/8/10.1063/1.3631339
10.1063/1.3631339
SEARCH_EXPAND_ITEM