Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/8/10.1063/1.3632055
1.
1. M. H. Thiemens and J. E. Heidenreich III, Science 219, 1073 (1983).
http://dx.doi.org/10.1126/science.219.4588.1073
2.
2. K. Mauersberger, Geophys. Res. Lett. 14, 80 (1987).
http://dx.doi.org/10.1029/GL014i001p00080
3.
3. R. E. Weston, Chem. Rev. 99, 2115 (1999).
http://dx.doi.org/10.1021/cr9800154
4.
4. K. Mauersberger, D. Krankowsky, C. Janssen, and R. Schinke, Adv. At., Mol., Opt. Phys. 50, 1 (2005).
http://dx.doi.org/10.1016/S1049-250X(04)50001-0
5.
5. M. H. Thiemens, Annu. Rev. Earth Planet Sci. 34, 217 (2006).
http://dx.doi.org/10.1146/annurev.earth.34.031405.125026
6.
6. C. Janssen, J. Guenther, K. Mauersberger, and D. Krankowski, Phys. Chem. Chem. Phys. 3, 4718 (2001).
http://dx.doi.org/10.1039/b107171h
7.
7. Y. Q. Gao and R. A. Marcus, Science 293, 259 (2001).
http://dx.doi.org/10.1126/science.1058528
8.
8. Y. Q. Gao and R. A. Marcus, J. Chem. Phys. 116, 137 (2002).
http://dx.doi.org/10.1063/1.1415448
9.
9. D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lessard, and R. Schinke, J. Chem. Phys. 119, 2577 (2003).
http://dx.doi.org/10.1063/1.1587113
10.
10. R. Schinke and P. Fleurat-Lessard, J. Chem. Phys. 122, 094317 (2005).
http://dx.doi.org/10.1063/1.1860011
11.
11. T. Xie and J. M. Bowman, Chem. Phys. Lett. 412, 131 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.06.111
12.
12. S. Y. Grebenshchikov and R. Schinke, J. Chem. Phys. 131, 181103 (2009).
http://dx.doi.org/10.1063/1.3253994
13.
13. R. Schinke, S. Y. Grebenshchikov, M. V. Ivanov, and P. Fleurat-Lessard, Annu. Rev. Phys. Chem. 57, 625 (2006).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104542
14.
14. T. Muller, S. S. Xantheas, H. Dachsel, R. I. Harrison, J. Nieplocha, R. Shepard, G. S. Kedziora, and H. Lischka, Chem. Phys. Lett. 293, 72 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00798-2
15.
15. D. Xie, H. Guo, and K. A. Peterson, J. Chem. Phys. 112, 8378 (2000).
http://dx.doi.org/10.1063/1.481442
16.
16. R. Siebert, R. Schinke, and M. Bittererova, Phys. Chem. Chem. Phys. 3, 1795 (2001).
http://dx.doi.org/10.1039/b102830h
17.
17. R. Schinke and P. Fleurat-Lessard, J. Chem. Phys. 121, 5789 (2004).
http://dx.doi.org/10.1063/1.1784776
18.
18. F. Holka, P. G. Szalay, T. Muller, and V. G. Tyuterev, J. Phys. Chem. A 114, 9927 (2010).
http://dx.doi.org/10.1021/jp104182q
19.
19. D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lesard, and R. Schinke, J. Chem. Phys. 118, 6298 (2003).
http://dx.doi.org/10.1063/1.1557936
20.
20. P. Fleurat-Lessard, S. Y. Grebenshchikov, R. Siebert, R. Schinke, and N. Halberstadt, J. Chem. Phys. 118, 610 (2003).
http://dx.doi.org/10.1063/1.1525255
21.
21. R. Hernandez-Lamoneda, M. R. Salazar, and R. T. Pack, Chem. Phys. Lett. 355, 478 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00276-2
22.
22. P. Rosmus, P. Palmieri, and R. Schinke, J. Chem. Phys. 117, 4871 (2002).
http://dx.doi.org/10.1063/1.1491396
23.
23. Z. Sun, L. Liu, S. Y. Lin, R. Schinke, H. Guo, and D. H. Zhang, Proc. Natl. Acad. Sci. U.S.A. 107, 555 (2010).
http://dx.doi.org/10.1073/pnas.0911356107
24.
24. S. Y. Lin and H. Guo, J. Phys. Chem. A 110, 5305 (2006).
http://dx.doi.org/10.1021/jp0556299
25.
25. S. M. Anderson, F. S. Klein, and F. Kaufman, J. Chem. Phys. 83, 1648 (1985).
http://dx.doi.org/10.1063/1.449402
26.
26. M. R. Wiegell, N. W. Larsen, T. Pedersen, and H. Egsgaard, Int. J. Chem. Kinet. 29, 745 (1997).
http://dx.doi.org/10.1002/(SICI)1097-4601(1997)29:10<745::AID-KIN3>3.0.CO;2-M
27.
27. P. Fleurat-Lessard, S. Y. Grebenshchikov, R. Schinke, C. Janssen, and D. Krankowsky, J. Chem. Phys. 119, 4700 (2003).
http://dx.doi.org/10.1063/1.1595091
28.
28. M. Tashiro and R. Schinke, J. Chem. Phys. 119, 10186 (2003).
http://dx.doi.org/10.1063/1.1616919
29.
29. P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
http://dx.doi.org/10.1016/0009-2614(88)87412-8
30.
30. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
http://dx.doi.org/10.1063/1.455556
31.
31. S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).
http://dx.doi.org/10.1002/qua.560080106
32.
32. MOLPRO, version 2010.1, a package of ab initio programs, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others, see http://www.molpro.net.
33.
33. M. P. Deskevich, D. J. Nesbitt, and H.-J. Werner, J. Chem. Phys. 120, 7281 (2004).
http://dx.doi.org/10.1063/1.1667468
34.
34. R. Dawes, A. W. Jasper, C. Tao, C. Richmond, C. Mukarakate, S. H. Kable, and S. A. Reid, J. Phys. Chem. Lett. 1, 641 (2010).
http://dx.doi.org/10.1021/jz900380a
35.
35. R. Dawes, D. L. Thompson, A. F. Wagner, and M. Minkoff, J. Phys. Chem. A 113, 4709 (2009).
http://dx.doi.org/10.1021/jp900409r
36.
36. R. Dawes, X.-G. Wang, A. W. Jasper, and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
http://dx.doi.org/10.1063/1.3494542
37.
37. A. L. Van Wyngarden, K. A. Mar, K. A. Boering, J. J. Lin, Y. T. Lee, S.-Y. Lin, H. Guo, and G. Lendvay, J. Am. Chem. Soc. 129, 2866 (2007).
http://dx.doi.org/10.1021/ja0668163
38.
38. B. Ruscic, private communication of ATcT result based on version 1.110 of the Core (Argonne) Thermochemical Network (May 17, 2010);
38.B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, J. Phys. Chem. A 108, 9979 (2004);
http://dx.doi.org/10.1021/jp047912y
38.B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, J. Phys.: Conf. Ser. 16, 561 (2005);
http://dx.doi.org/10.1088/1742-6596/16/1/078
38.W. Klopper, B. Ruscic, D. P. Tew, F. A. Bischoff, and S. Wolfsegger, Chem. Phys. 356, 14 (2009).
http://dx.doi.org/10.1016/j.chemphys.2008.11.013
39.
39.See supplementary material athttp://dx.doi.org/10.1063/1.3632055 for details of the electronic structure and wavepacket calculations. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/8/10.1063/1.3632055
Loading
/content/aip/journal/jcp/135/8/10.1063/1.3632055
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/8/10.1063/1.3632055
2011-08-24
2016-09-27

Abstract

Atmospheric ozone is formed by the O + O2exchange reaction followed by collisional stabilization of the O3 * intermediate. The dynamics of the O + O2reaction and to a lesser extent the O3 stabilization depend sensitively on the underlying potential energy surface, particularly in the asymptotic region. Highly accurate Davidson corrected multi-state multi-reference configuration interaction calculations reported here reveal that the minimal energy path for the formation of O3 from O + O2 is a monotonically decaying function of the atom-diatom distance and contains no “reef” feature found in previous ab initio calculations. The absence of a submerged barrier leads to an exchange rate constant with the correct temperature dependence and is in better agreement with experiment, as shown by quantum scattering calculations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/8/1.3632055.html;jsessionid=LnrNUxEQ6TdiSWNCgQhUgRLo.x-aip-live-03?itemId=/content/aip/journal/jcp/135/8/10.1063/1.3632055&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/8/10.1063/1.3632055&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/8/10.1063/1.3632055'
Right1,Right2,Right3,