Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. H. Thiemens and J. E. Heidenreich III, Science 219, 1073 (1983).
2. K. Mauersberger, Geophys. Res. Lett. 14, 80 (1987).
3. R. E. Weston, Chem. Rev. 99, 2115 (1999).
4. K. Mauersberger, D. Krankowsky, C. Janssen, and R. Schinke, Adv. At., Mol., Opt. Phys. 50, 1 (2005).
5. M. H. Thiemens, Annu. Rev. Earth Planet Sci. 34, 217 (2006).
6. C. Janssen, J. Guenther, K. Mauersberger, and D. Krankowski, Phys. Chem. Chem. Phys. 3, 4718 (2001).
7. Y. Q. Gao and R. A. Marcus, Science 293, 259 (2001).
8. Y. Q. Gao and R. A. Marcus, J. Chem. Phys. 116, 137 (2002).
9. D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lessard, and R. Schinke, J. Chem. Phys. 119, 2577 (2003).
10. R. Schinke and P. Fleurat-Lessard, J. Chem. Phys. 122, 094317 (2005).
11. T. Xie and J. M. Bowman, Chem. Phys. Lett. 412, 131 (2005).
12. S. Y. Grebenshchikov and R. Schinke, J. Chem. Phys. 131, 181103 (2009).
13. R. Schinke, S. Y. Grebenshchikov, M. V. Ivanov, and P. Fleurat-Lessard, Annu. Rev. Phys. Chem. 57, 625 (2006).
14. T. Muller, S. S. Xantheas, H. Dachsel, R. I. Harrison, J. Nieplocha, R. Shepard, G. S. Kedziora, and H. Lischka, Chem. Phys. Lett. 293, 72 (1998).
15. D. Xie, H. Guo, and K. A. Peterson, J. Chem. Phys. 112, 8378 (2000).
16. R. Siebert, R. Schinke, and M. Bittererova, Phys. Chem. Chem. Phys. 3, 1795 (2001).
17. R. Schinke and P. Fleurat-Lessard, J. Chem. Phys. 121, 5789 (2004).
18. F. Holka, P. G. Szalay, T. Muller, and V. G. Tyuterev, J. Phys. Chem. A 114, 9927 (2010).
19. D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lesard, and R. Schinke, J. Chem. Phys. 118, 6298 (2003).
20. P. Fleurat-Lessard, S. Y. Grebenshchikov, R. Siebert, R. Schinke, and N. Halberstadt, J. Chem. Phys. 118, 610 (2003).
21. R. Hernandez-Lamoneda, M. R. Salazar, and R. T. Pack, Chem. Phys. Lett. 355, 478 (2002).
22. P. Rosmus, P. Palmieri, and R. Schinke, J. Chem. Phys. 117, 4871 (2002).
23. Z. Sun, L. Liu, S. Y. Lin, R. Schinke, H. Guo, and D. H. Zhang, Proc. Natl. Acad. Sci. U.S.A. 107, 555 (2010).
24. S. Y. Lin and H. Guo, J. Phys. Chem. A 110, 5305 (2006).
25. S. M. Anderson, F. S. Klein, and F. Kaufman, J. Chem. Phys. 83, 1648 (1985).
26. M. R. Wiegell, N. W. Larsen, T. Pedersen, and H. Egsgaard, Int. J. Chem. Kinet. 29, 745 (1997).<745::AID-KIN3>3.0.CO;2-M
27. P. Fleurat-Lessard, S. Y. Grebenshchikov, R. Schinke, C. Janssen, and D. Krankowsky, J. Chem. Phys. 119, 4700 (2003).
28. M. Tashiro and R. Schinke, J. Chem. Phys. 119, 10186 (2003).
29. P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
30. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
31. S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).
32. MOLPRO, version 2010.1, a package of ab initio programs, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others, see
33. M. P. Deskevich, D. J. Nesbitt, and H.-J. Werner, J. Chem. Phys. 120, 7281 (2004).
34. R. Dawes, A. W. Jasper, C. Tao, C. Richmond, C. Mukarakate, S. H. Kable, and S. A. Reid, J. Phys. Chem. Lett. 1, 641 (2010).
35. R. Dawes, D. L. Thompson, A. F. Wagner, and M. Minkoff, J. Phys. Chem. A 113, 4709 (2009).
36. R. Dawes, X.-G. Wang, A. W. Jasper, and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
37. A. L. Van Wyngarden, K. A. Mar, K. A. Boering, J. J. Lin, Y. T. Lee, S.-Y. Lin, H. Guo, and G. Lendvay, J. Am. Chem. Soc. 129, 2866 (2007).
38. B. Ruscic, private communication of ATcT result based on version 1.110 of the Core (Argonne) Thermochemical Network (May 17, 2010);
38.B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, J. Phys. Chem. A 108, 9979 (2004);
38.B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, J. Phys.: Conf. Ser. 16, 561 (2005);
38.W. Klopper, B. Ruscic, D. P. Tew, F. A. Bischoff, and S. Wolfsegger, Chem. Phys. 356, 14 (2009).
39.See supplementary material at for details of the electronic structure and wavepacket calculations. [Supplementary Material]

Data & Media loading...


Article metrics loading...



Atmospheric ozone is formed by the O + O2exchange reaction followed by collisional stabilization of the O3 * intermediate. The dynamics of the O + O2reaction and to a lesser extent the O3 stabilization depend sensitively on the underlying potential energy surface, particularly in the asymptotic region. Highly accurate Davidson corrected multi-state multi-reference configuration interaction calculations reported here reveal that the minimal energy path for the formation of O3 from O + O2 is a monotonically decaying function of the atom-diatom distance and contains no “reef” feature found in previous ab initio calculations. The absence of a submerged barrier leads to an exchange rate constant with the correct temperature dependence and is in better agreement with experiment, as shown by quantum scattering calculations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd