Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/8/10.1063/1.3633329
1.
1. B. O. Roos, P. Linse, P. E. M. Siegbahn, and M. R. A. Blomberg, Chem. Phys. 66, 197 (1982).
http://dx.doi.org/10.1016/0301-0104(82)88019-1
2.
2. K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
http://dx.doi.org/10.1021/j100377a012
3.
3. K. Andersson, P.-Å. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
http://dx.doi.org/10.1063/1.462209
4.
4. H.-J. Werner, Mol. Phys. 89, 645 (1996).
http://dx.doi.org/10.1080/00268979609482499
5.
5. P. Celani and H.-J. Werner, J. Chem. Phys. 112, 5546 (2000).
http://dx.doi.org/10.1063/1.481132
6.
6. T. Shiozaki and H.-J. Werner, J. Chem. Phys. 133, 141103 (2010).
http://dx.doi.org/10.1063/1.3489000
7.
7. K. Wolinski, H. L. Sellers, and P. Pulay, Chem. Phys. Lett. 140, 225 (1987).
http://dx.doi.org/10.1016/0009-2614(87)80448-7
8.
8. K. Wolinski and P. Pulay, J. Chem. Phys. 90, 3647 (1989).
http://dx.doi.org/10.1063/1.456696
9.
9. R. B. Murphy and R. P. Messmer, Chem. Phys. Lett. 183, 443 (1991).
http://dx.doi.org/10.1016/0009-2614(91)90407-Z
10.
10. R. B. Murphy and R. P. Messmer, J. Chem. Phys. 97, 4170 (1992).
http://dx.doi.org/10.1063/1.463992
11.
11. K. Hirao, Chem. Phys. Lett. 190, 374 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85354-D
12.
12. K. Hirao, Chem. Phys. Lett. 196, 397 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85710-R
13.
13. K. Hirao, Chem. Phys. Lett. 201, 59 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85034-L
14.
14. C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu, J. Chem. Phys. 114, 10252 (2001).
http://dx.doi.org/10.1063/1.1361246
15.
15. F. Aquilante, P.-Å. Malmqvist, T. B. Pedersen, A. Ghosh, and B. O. Roos, J. Chem. Theory Comput. 4, 694 (2008).
http://dx.doi.org/10.1021/ct700263h
16.
16. S. Ten-no, Chem. Phys. Lett. 447, 175 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.09.006
17.
17. J. Finley, P.-Å. Malmqvist, B. O. Roos, and L. Serrano-Andrés, Chem. Phys. Lett. 288, 299 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00252-8
18.
18. H. Nakano, J. Chem. Phys. 99, 7983 (1993).
http://dx.doi.org/10.1063/1.465674
19.
19. A. A. Granovsky, J. Chem. Phys. 134, 214113 (2011).
http://dx.doi.org/10.1063/1.3596699
20.
20. A. A. Granovsky, FIREFLY, see http://classic.chem.msu.su/gran/firefly/index.html (accessed 17 August 2011).
21.
21. P. Celani and H.-J. Werner, J. Chem. Phys. 119, 5044 (2003).
http://dx.doi.org/10.1063/1.1597672
22.
22. H. Nakano, K. Hirao, and M. S. Gordon, J. Chem. Phys. 108, 5660 (1998).
http://dx.doi.org/10.1063/1.475975
23.
23. R. Ebisuzaki, Y. Watanabe, and H. Nakano, Chem. Phys. Lett. 442, 164 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.05.066
24.
24. Y. G. Khait, J. Song, and M. R. Hoffmann, J. Chem. Phys. 117, 4133 (2002).
http://dx.doi.org/10.1063/1.1497642
25.
25. T. J. Dudley, Y. G. Khait, and M. R. Hoffmann, J. Chem. Phys. 119, 651 (2003).
http://dx.doi.org/10.1063/1.1579467
26.
26. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Comput. Mol. Sci. available online at http://onlinelibrary.wiley.com/doi/10.1002/wcms.82/pdf.
http://dx.doi.org/10.1002/wcms.82
27.
27. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, Version 2010.1, a package of ab initio programs, see http://www.molpro.net.
28.
28. B. G. Levine, J. D. Coe, and T. J. Martínez, J. Phys. Chem. B 112, 405 (2008).
http://dx.doi.org/10.1021/jp0761618
29.
29. H. Tao, B. G. Levine, and T. J. Martínez, J. Phys. Chem. A 113, 13656 (2009).
http://dx.doi.org/10.1021/jp9063565
30.
30. T. Mori and S. Kato, Chem. Phys. Lett. 476, 97 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.05.067
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.3633329 for details of the XMS-CASPT2 gradient theory and the optimized geometries of pyrrole. [Supplementary Material]
32.
32. P. J. Knowles and H.-J. Werner, Theor. Chim. Acta 84, 95 (1992).
http://dx.doi.org/10.1007/BF01117405
33.
33. K. R. Shamasundar, G. Knizia, and H.-J. Werner, J. Chem. Phys. 135, 054101 (2011).
http://dx.doi.org/10.1063/1.3609809
34.
34. B. O. Roos and K. Andersson, Chem. Phys. Lett. 245, 215 (1995).
http://dx.doi.org/10.1016/0009-2614(95)01010-7
35.
35. P. Celani and H.-J. Werner (unpublished).
36.
36. L. Serrano-Andrés, M. Merchán, and R. Lindh, J. Chem. Phys. 122, 104107 (2005).
http://dx.doi.org/10.1063/1.1866096
37.
37. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
38.
38. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
39.
39. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
http://dx.doi.org/10.1063/1.455556
40.
40. P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
http://dx.doi.org/10.1016/0009-2614(88)87412-8
41.
41. A. J. C. Varandas, J. Chem. Phys. 131, 124128 (2009).
http://dx.doi.org/10.1063/1.3237028
42.
42. O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 103, 7429 (1995).
http://dx.doi.org/10.1063/1.470315
43.
43. O. Christiansen, J. Gauss, J. F. Stanton, and P. Jørgensen, J. Chem. Phys. 111, 525 (1999).
http://dx.doi.org/10.1063/1.479332
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/8/10.1063/1.3633329
Loading
/content/aip/journal/jcp/135/8/10.1063/1.3633329
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/8/10.1063/1.3633329
2011-08-30
2016-12-11

Abstract

The extended multireference quasi-degenerate perturbation theory, proposed by Granovsky [J. Chem. Phys.134, 214113 (2011)], is combined with internally contracted multi-state complete active space second-order perturbation theory (XMS-CASPT2). The first-order wavefunction is expanded in terms of the union of internally contracted basis functions generated from all the reference functions, which guarantees invariance of the theory with respect to unitary rotations of the reference functions. The method yields improved potentials in the vicinity of avoided crossings and conical intersections. The theory for computing nuclear energy gradients for MS-CASPT2 and XMS-CASPT2 is also presented and the first implementation of these gradient methods is reported. A number of illustrative applications of the new methods are presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/8/1.3633329.html;jsessionid=Nh9gp9DNtSGlyZS3frdGA8-O.x-aip-live-06?itemId=/content/aip/journal/jcp/135/8/10.1063/1.3633329&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/8/10.1063/1.3633329&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/8/10.1063/1.3633329'
Right1,Right2,Right3,