1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Self-assembly of semiflexible-flexible block copolymers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/10/10.1063/1.3692601
1.
1. T. J. Deming, Adv. Mater. 9, 299 (1997);
http://dx.doi.org/10.1002/adma.19970090404
1.X. L. Chen and S. A. Jenekhe, Macromolecules 33, 4610 (2000);
http://dx.doi.org/10.1021/ma000100p
1.R. A. Segalman, B. McCulloch, S. Kirmayer, and J. J. Urban, Macromolecules 42, 9205 (2009);
http://dx.doi.org/10.1021/ma901350w
1.B. de Boer, U. Stalmach, P. F. van Hutten, C. Melzer, V. V. Krasnikov, and G. Hadziioannou, Polymer 42, 9097 (2001);
http://dx.doi.org/10.1016/S0032-3861(01)00388-3
1.M. Shah and V. Ganesan, Macromolecules 43, 543 (2010).
http://dx.doi.org/10.1021/ma9020467
2.
2. J. T. Chen, E. L. Thomas, C. K. Ober, and G. P. Mao, Science 273, 343 (1996);
http://dx.doi.org/10.1126/science.273.5273.343
2.M. Lee, J. W. Kim, I. W. Hwang, Y. R. Kim, N. K. Oh, and W. C. Zin, Adv. Mater. 13, 1363 (2001).
http://dx.doi.org/10.1002/1521-4095(200109)13:18<1363::AID-ADMA1363>3.0.CO;2-I
3.
3. A. Halperin, Europhys. Lett. 10, 549 (1989);
http://dx.doi.org/10.1209/0295-5075/10/6/008
3.A. N. Semenov, Mol. Cryst. Liq. Cryst. 209, 191 (1991);
http://dx.doi.org/10.1080/00268949108036194
3.R. Holyst and M. Schick, J. Chem. Phys. 96, 730 (1992);
http://dx.doi.org/10.1063/1.462458
3.M. Reenders and G. ten Brinke, Macromolecules 35, 3266 (2002).
http://dx.doi.org/10.1021/ma011777v
4.
4. D. R. M. Williams and G. H. Fredrickson, Macromolecules 25, 3561 (1992).
http://dx.doi.org/10.1021/ma00039a040
5.
5. G. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, New York, 2006).
6.
6. M. W. Matsen and C. Barrett, J. Chem. Phys. 109, 4108 (1998);
http://dx.doi.org/10.1063/1.477011
6.B. D. Olsen, M. Shah, V. Ganesan, and R. A. Segalman, Macromolecules 41, 6809 (2008);
http://dx.doi.org/10.1021/ma800978c
6.M. Shah, V. Pryarnitsyn, and V. Ganesan, Macromolecules 41, 218 (2008);
http://dx.doi.org/10.1021/ma071566b
6.G. A. Yang, P. Tang, Y. L. Yang, and Q. A. Wang, J. Chem. Phys. B 114, 14897 (2010);
http://dx.doi.org/10.1021/jp107997b
6.Q. A. Wang, Soft Matter 7, 3711 (2011);
http://dx.doi.org/10.1039/c0sm01216e
6.W. D. Song, P. Tang, F. Qiu, Y. Yang, and A.-C. Shi, J. Chem. Phys. B 115, 8390 (2011).
http://dx.doi.org/10.1021/jp201972n
7.
7. V. Pryamitsyn and V. Ganesan, J. Chem. Phys. 120, 5824 (2004).
http://dx.doi.org/10.1063/1.1649729
8.
8. M. W. Matsen, J. Chem. Phys. 104, 7758 (1996).
http://dx.doi.org/10.1063/1.471481
9.
9. V. Ganesan, L. Khounlavong, and V. Pryamitsyn, Phys. Rev. E 78, 051804 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.051804
10.
10. M. Shah and V. Ganesan, J. Chem. Phys. 130, 054904 (2009).
http://dx.doi.org/10.1063/1.3072339
11.
11. W. D. Song, P. Tang, F. Qiu, Y. L. Yang, and A. C. Shi, Soft Matter 7, 929 (2011);
http://dx.doi.org/10.1039/c0sm00841a
11.J. Gao, W. D. Song, P. Tang, and Y. L. Yang, Soft Matter 7, 5208 (2011).
http://dx.doi.org/10.1039/c1sm05142c
12.
12. V. Ganesan and V. Pryamitsyn, J. Chem. Phys. 118, 4345 (2003).
http://dx.doi.org/10.1063/1.1557052
13.
13. B. Narayanan, V. A. Pryamitsyn, and V. Ganesan, Macromolecules 37, 10180 (2004);
http://dx.doi.org/10.1021/ma048986a
13.B. Narayanan and V. Ganesan, Phys. Fluids 18, 042109 (2006);
http://dx.doi.org/10.1063/1.2195464
13.B. Narayanan, V. Pryamitsyn, and V. Ganesan, Phys. Rev. Lett. 96, 028302 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.028302
14.
14. F. A. Detcheverry, D. Q. Pike, U. Nagpal, P. F. Nealey, and J. J. de Pablo, Soft Matter 5, 4858 (2009);
http://dx.doi.org/10.1039/b911646j
14.D. Q. Pike, F. A. Detcheverry, M. Muller, and J. J. de Pablo, J. Chem. Phys. 131, 084903 (2009);
http://dx.doi.org/10.1063/1.3187936
14.F. A. Detcheverry, D. Q. Pike, P. F. Nealey, M. Muller, and J. J. de Pablo, Phys. Rev. Lett. 102, 197801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.197801
15.
15. L. Leibler, Macromolecules 13, 1602 (1980);
http://dx.doi.org/10.1021/ma60078a047
15.M. W. Matsen, J. Phys. Condens. Matter 14, R21 (2002).
http://dx.doi.org/10.1088/0953-8984/14/2/201
16.
16. M. Hinczewski, X. Schlagberger, M. Rubinstein, O. Krichevsky, and R. R. Netz, Macromolecules 42, 860 (2009).
http://dx.doi.org/10.1021/ma802017g
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.3692601 for a description of the SCBD model and numerical details. [Supplementary Material]
18.
18. , where represents the largest eigenvalue of the orientation tensor .
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/10/10.1063/1.3692601
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Phase diagrams from 2D SCBD calculations: (a) L p /L = 0.02; (b) L p /L = 0.2; (c) L p /L = 0.5; (d) L p /L = 1.0. The lines are meant to be a guide to the eye, and do not represent real phase boundaries. The parameters correspond to N = 20 and μ/χ = 4.0.

Image of FIG. 2.

Click to view

FIG. 2.

Morphological characteristics of different phases. In the intensity plots, red and blue corresponds to B and A segments, respectively. (a) Smectic A morphologies (L p = 0.2L; χN = 15.0; f = 0.2); (b) direction of orientation of the semiflexible units in (a); (c) and (d) morphology and orientations in smectic C morphology (L p = 0.2L; χN = 25.0; f = 0.2); (e) smectic C bilayer morphology (L p = L; χN = 20.0; f = 0.2); (f) distribution of end segments of the B units for the morphology of (e). It can be seen that the end segments (red) are primarily located in the middle of the layer, consistent with a bilayer morphology; (g) pucks (L p = L; χN = 25.0; f = 0.75); (h) cylinders (L p = 0.02L; χN = 20.0; f = 0.7). (i) and (j) depict to the distribution of AB links for the morphologies corresponding to (g) and (h), respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Maximum value of spatially dependent orientational order parameter of the semiflexible domain for L p /L = 0.2 (filled symbols) and Lp/L = 1.0 (open symbols). Lines are meant to be a guide to the eye.

Loading

Article metrics loading...

/content/aip/journal/jcp/136/10/10.1063/1.3692601
2012-03-08
2014-04-18

Abstract

We apply the methodology of self-consistent Brownian dynamics simulations to study the self-assembly behavior in melts of semiflexible-flexible diblock copolymers as a function of the persistence length of the semiflexible block. Our results reveal a novel progression of morphologies in transitioning from the case of flexible-coil to rod-coil copolymers. At even moderate persistence lengths, the morphologies in the semiflexible-block rich region of the phase diagram transform to liquid crystalline phases. In contrast, the phases in the flexible-block rich region of the phase diagram persist up to much larger persistence lengths. Our analysis suggests that the development of orientational order in the semiflexible block to be a critical factor influencing the morphologies of self-assembly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/10/1.3692601.html;jsessionid=477d934lvn824.x-aip-live-06?itemId=/content/aip/journal/jcp/136/10/10.1063/1.3692601&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Self-assembly of semiflexible-flexible block copolymers
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/10/10.1063/1.3692601
10.1063/1.3692601
SEARCH_EXPAND_ITEM