1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Evidence of stable high-temperature Dx-CO intermediates on the Ru(0001) surface
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/11/10.1063/1.3689553
1.
1. S. Shetty and R. A. van Santen, Catal. Today 171(1), 168 (2011).
http://dx.doi.org/10.1016/j.cattod.2011.04.006
2.
2. O. R. Inderwildi, D. A. King, and S. J. Jenkins, Phys. Chem. Chem. Phys. 11(47), 11110 (2009).
http://dx.doi.org/10.1039/b915696h
3.
3. O. R. Inderwildi, S. J. Jenkins, and D. A. King, Angew. Chem., Int. Ed. 47(28), 5253 (2008).
http://dx.doi.org/10.1002/anie.200800685
4.
4. M. P. Andersson, F. Abild-Pedersen, I. N. Remediakis, T. Bligaard, G. Jones, J. Engbæk, O. Lytken, S. Horch, J. H. Nielsen, J. Sehested, J. R. Rostrup-Nielsen, J. K. Nørskov, and I. Chorkendorff, J. Catal. 255(1), 6 (2008).
http://dx.doi.org/10.1016/j.jcat.2007.12.016
5.
5. I. M. Ciobica and R. A. van Santen, J. Phys. Chem. B 107(16), 3808 (2003).
http://dx.doi.org/10.1021/jp030010x
6.
6. O. R. Inderwildi, S. J. Jenkins, and D. A. King, J. Phys. Chem. C 112(5), 1305 (2008).
http://dx.doi.org/10.1021/jp710674q
7.
7. W. J. Mitchell, J. Xie, T. A. Jachimowski, and W. H. Weinberg, J. Am. Chem. Soc. 117(9), 2606 (1995).
http://dx.doi.org/10.1021/ja00114a025
8.
8. S. Shetty, A. P. J. Jansen, and R. A. van Santen, J. Am. Chem. Soc. 131(36), 12874 (2009).
http://dx.doi.org/10.1021/ja9044482
9.
9. G. A. Morgan, D. C. Sorescu, T. Zubkov, and J. T. Yates, J. Phys. Chem. B 108(11), 3614 (2004).
http://dx.doi.org/10.1021/jp0310753
10.
10. B. Riedmuller, D. C. Papageorgopoulos, B. Berenbak, R. A. van Santen, and A. W. Kleyn, Surf. Sci. 515(2–3), 323 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01912-X
11.
11. B. Riedmuller, I. M. Ciobica, D. C. Papageorgopoulos, F. Frechard, B. Berenbak, A. W. Kleyn, and R. A. van Santen, J. Chem. Phys. 115(11), 5244 (2001);
http://dx.doi.org/10.1063/1.1395625
11.B. Riedmuller, I. M. Ciobica, D. C. Papageorgopoulos, B. Berenbak, R. A. van Santen, and A. W. Kleyn, Surf. Sci. 465(3), 347 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00767-6
12.
12. I. M. Ciobica, A. W. Kleyn, and R. A. Van Santen, J. Phys. Chem. B 107(1), 164 (2003).
http://dx.doi.org/10.1021/jp0201478
13.
13. H. Ueta, I. M. N. Groot, M. A. Gleeson, S. Stolte, G. C. McBane, L. B. F. Juurlink, and A. W. Kleyn, ChemPhysChem 9(16), 2372 (2008).
http://dx.doi.org/10.1002/cphc.200800294
14.
14. I. M. N. Groot, J. C. Juanes-Marcos, C. Diaz, M. F. Somers, R. A. Olsen, and G. J. Kroes, Phys. Chem. Chem. Phys. 12(6), 1331 (2010).
http://dx.doi.org/10.1039/b919419c
15.
15. I. M. N. Groot, J. C. Juanes-Marcos, R. A. Olsen, and G. J. Kroes, J. Chem. Phys. 132(14), 144704 (2010).
http://dx.doi.org/10.1063/1.3378278
16.
16. B. Riedmuller, F. Giskes, D. G. van Loon, P. Lassing, and A. W. Kleyn, Meas. Sci. Technol. 13 (2), 141 (2002).
http://dx.doi.org/10.1088/0957-0233/13/2/301
17.
17. H. Pfnür, P. Feulner, and D. Menzel, J. Chem. Phys. 79(9), 4613 (1983).
http://dx.doi.org/10.1063/1.446378
18.
18. C. A. de Wolf, M. O. Hattink, and B. E. Nieuwenhuys, J. Phys. Chem. B 104(14), 3204 (2000).
http://dx.doi.org/10.1021/jp993716t
19.
19. E. D. Williams and W. H. Weinberg, Surf. Sci. 82(1), 93 (1979).
http://dx.doi.org/10.1016/0039-6028(79)90320-0
20.
20. Y. K. Sun and W. H. Weinberg, Surf. Sci. 214(1–2), L246 (1989).
http://dx.doi.org/10.1016/0039-6028(89)90403-2
21.
21. I. M. N. Groot, H. Ueta, M. van der Niet, A. W. Kleyn, and L. B. F. Juurlink, J. Chem. Phys. 127(24), 244701 (2007).
http://dx.doi.org/10.1063/1.2813413
22.
22. D. A. King and M. G. Wells, Surf. Sci. 29(2), 454 (1972);
http://dx.doi.org/10.1016/0039-6028(72)90232-4
22.D. A. King and M. G. Wells, Proc. R. Soc., London Ser. A 339(1617), 245 (1974).
http://dx.doi.org/10.1098/rspa.1974.0120
23.
23. T. Diemant, J. Bansmann, and H. Rauscher, ChemPhysChem 11(7), 1482 (2010);
http://dx.doi.org/10.1002/cphc.200900839
23.T. Diemant, H. Rauscher, J. Bansmann, and R. J. Behm, Phys. Chem. Chem. Phys. 12(33), 9801 (2010).
http://dx.doi.org/10.1039/c003368e
24.
24. S. Kneitz, J. Gemeinhardt, and H. P. Steinruck, Surf. Sci. 440(3), 307 (1999).
http://dx.doi.org/10.1016/S0039-6028(99)00773-6
25.
25. J. S. McEwen and A. Eichler, J. Chem. Phys. 126(9), 14 (2007);
http://dx.doi.org/10.1063/1.2464085
25.S. H. Payne, J. S. McEwen, H. J. Kreuzer, and D. Menzel, Surf. Sci. 594(1–3), 240 (2005);
http://dx.doi.org/10.1016/j.susc.2005.07.031
25.H. Pfnür and H. J. Heier, Ber. Bunsenges. Phys. Chem. 90(3), 272 (1986).
26.
26. J. Braun, K. Kostov, G. Witte, and C. Wöll, J. Chem. Phys. 106(19), 8262 (1997).
http://dx.doi.org/10.1063/1.473828
27.
27. C. Mak, A. Deckert, and S. George, J. Chem. Phys. 89(8), 5242 (1988).
http://dx.doi.org/10.1063/1.455615
28.
28. D. E. Peebles, J. A. Schreifels, and J. M. White, Surf. Sci. 116(1), 117 (1982).
http://dx.doi.org/10.1016/0039-6028(82)90682-3
29.
29. A. R. Alemozafar and R. J. Madix, J. Phys. Chem. B 108(22), 7247 (2004).
http://dx.doi.org/10.1021/jp031208k
30.
30. S. T. Ceyer, Acc. Chem. Res. 34(9), 737 (2001).
http://dx.doi.org/10.1021/ar970030f
31.
31. I. del Rosal, L. Truflandier, R. Poteau, and I. C. Gerber, J. Phys. Chem. C 115(5), 2169 (2011).
http://dx.doi.org/10.1021/jp110090e
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/11/10.1063/1.3689553
Loading
/content/aip/journal/jcp/136/11/10.1063/1.3689553
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/11/10.1063/1.3689553
2012-03-21
2014-07-30

Abstract

We demonstrate the formation of complexes involving attractive interactions between D and CO on Ru(0001) that are stable at significantly higher temperatures than have previously been reported for such intermediate species on this surface. These complexes are evident by the appearance of new desorption features upon heating of the sample. They decompose in stages as the sample temperature is increased, with the most stable component desorbing at >500 K. The D:CO ratio remaining on the surface during the final stages of desorption tends towards 1:1. The new features are populated during normally incident molecular beam dosing of D2 on to CO pre-covered Ru(0001) surfaces (180 K) when the CO coverage exceeds 50% of the saturation value. The amount of complex formed decreases somewhat with increasing CO pre-coverage. It is almost absent in the case of dosing on to the fully saturated surface. The results are interpreted in terms of both local and long-range rearrangements of the overlayer that give rise to the observed CO coverage dependence and limit the amount of complex that can be formed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/11/1.3689553.html;jsessionid=1l07smyrqylcu.x-aip-live-02?itemId=/content/aip/journal/jcp/136/11/10.1063/1.3689553&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Evidence of stable high-temperature Dx-CO intermediates on the Ru(0001) surface
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/11/10.1063/1.3689553
10.1063/1.3689553
SEARCH_EXPAND_ITEM