1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Bulkiness versus anisotropy: The optimal shape of polarizable Brownian nanoparticles for alignment in electric fields
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/13/10.1063/1.3701615
1.
1. S. C. Glotzer and M. J. Solomon, Nature Mater. 6, 557 (2007).
http://dx.doi.org/10.1038/nmat1949
2.
2. S.-M. Yang, S.-H. Kim, J.-M. Lima, and G.-R. Yi, J. Mater. Chem. 18, 2177 (2008).
http://dx.doi.org/10.1039/b716393b
3.
3. L. Rossi, S. Sacanna, and K. P. Velikov, Soft Matter 7, 64 (2011).
http://dx.doi.org/10.1039/c0sm00822b
4.
4. M. Marechal, R. J. Kortschot, A. F. Demirörs, A. Imhof, and M. Dijkstra, Nano Lett. 10, 1907 (2010).
http://dx.doi.org/10.1021/nl100783g
5.
5. I. D. Hosein and C. M. Liddell, Langmuir 23, 8810 (2007).
http://dx.doi.org/10.1021/la700865t
6.
6. X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, Nano Lett. 4, 2223 (2004).
http://dx.doi.org/10.1021/nl048589d
7.
7. C. I. Zoldesi, C. A. van Walree, and A. Imhof, Langmuir 22, 4343 (2006).
http://dx.doi.org/10.1021/la060101w
8.
8. D. Nagao, C. M. van Kats, K. Hayasaka, M. Sugimoto, M. Konno, A. Imhof, and A. van Blaaderen, Langmuir 26, 5208 (2010).
http://dx.doi.org/10.1021/la903673j
9.
9. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, ACS Nano 4, 3591 (2010).
http://dx.doi.org/10.1021/nn100869j
10.
10. M. J. Solomon, Curr. Opin. Colloid Interface & Sci 16, 158 (2011).
http://dx.doi.org/10.1016/j.cocis.2011.01.006
11.
11. S. C. Glotzer, M. A. Horsch, C. R. Iacovella, Z. Zhang, E. R. Chan, and X. Zhang, Curr. Opin. Colloid Interface & Sci. 10, 287 (2005).
http://dx.doi.org/10.1016/j.cocis.2005.09.011
12.
12. B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, J. Phys. Chem. B 104, 8635 (2000).
http://dx.doi.org/10.1021/jp001287p
13.
13. D. Fava, Z. Nie, M. A. Winnik, and E. Kumacheva, Adv. Mater. 20, 4318 (2008).
http://dx.doi.org/10.1002/adma.200702786
14.
14. E. L. Thomas, Science 286, 1307 (1999).
http://dx.doi.org/10.1126/science.286.5443.1307
15.
15. D. J. Kraft, W. S. Vlug, C. M. van Kats, A. van Blaaderen, A. Imhof, and W. K. Kegel, J. Am. Chem. Soc. 131, 1182 (2008).
http://dx.doi.org/10.1021/ja8079803
16.
16. I. D. Hosein, S. H. Lee, and C. M. Liddell, Adv. Funct. Mater. 20, 3085 (2010).
http://dx.doi.org/10.1002/adfm.201000134
17.
17. D. V. Talapin, E. V. Shevchenko, C. B. Murray, A. Kornowski, S. Förster, and H. Weller, J. Am. Chem. Soc. 126, 12984 (2004).
http://dx.doi.org/10.1021/ja046727v
18.
18. S. Ahmed and K. M. Ryan, Nano Lett. 7, 2480 (2007).
http://dx.doi.org/10.1021/nl071263v
19.
19. B. Sun and H. Sirringhaus, J. Am. Chem. Soc. 128, 16231 (2006).
http://dx.doi.org/10.1021/ja065242z
20.
20. D. van der Beek, A. V. Petukhov, P. Davidson, J. Ferré, J. P. Jamet, H. H. Wensink, G. J. Vroege, W. Bras, and H. N. Lekkerkerker, Phys. Rev. E 73, 041402 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041402
21.
21. K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, and M. L. H. Green, Appl. Phys. Lett. 71, 1906 (1997).
http://dx.doi.org/10.1063/1.119976
22.
22. A. F. Demirörs, P. M. Johnson, C. M. van Kats, A. van Blaaderen, and A. Imhof, Langmuir 26, 14466 (2010).
http://dx.doi.org/10.1021/la102134w
23.
23. P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000).
http://dx.doi.org/10.1063/1.1290272
24.
24. K. M. Ryan, A. Mastroianni, K. A. Stancil, H. Liu, and A. P. Alivisatos, Nano Lett. 6, 1479 (2006).
http://dx.doi.org/10.1021/nl060866o
25.
25. M. J. Renne and B. R. A. Nijboer, Chem. Phys. Lett. 1, 317 (1967).
http://dx.doi.org/10.1016/0009-2614(67)80004-6
26.
26. B. R. A. Nijboer and M. J. Renne, Chem. Phys. Lett. 2, 35 (1968).
http://dx.doi.org/10.1016/0009-2614(68)80141-1
27.
27. H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole, and G. Mukhopadhyay, Phys. Rev. A 72, 053201 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.053201
28.
28. S. M. Gatica, M. W. Cole, and D. Velegol, Nano Lett. 5, 169 (2005).
http://dx.doi.org/10.1021/nl048265p
29.
29. H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole, and A. A. Lucas, J. Chem. Phys. 124, 074504 (2006).
http://dx.doi.org/10.1063/1.2170091
30.
30. H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole, and A. A. Lucas, Langmuir 23, 1735 (2007).
http://dx.doi.org/10.1021/la061802w
31.
31. M. W. Cole and D. Velegol, Mol. Phys. 106, 1587 (2008).
http://dx.doi.org/10.1080/00268970802195066
32.
32. B. W. Kwaadgras, M. Verdult, M. Dijkstra, and R. van Roij, J. Chem. Phys. 135, 134105 (2011).
http://dx.doi.org/10.1063/1.3637046
33.
33. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
34.
34. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).
35.
35. A. Sihvola, J. Nanomater. 2007, 45090 (2007).
http://dx.doi.org/10.1155/2007/45090
36.
36. A. Sihvola, P. Yla-Oijala, S. Jarvenpaa, and J. Avelin, IEEE Trans. Antennas. Propag. 52, 2226 (2004).
http://dx.doi.org/10.1109/TAP.2004.834081
37.
37. H. Kettunen, H. Wallen, and A. Sihvola, J. Appl. Phys. 102, 044105 (2007).
http://dx.doi.org/10.1063/1.2769288
38.
38. M. Pitkonen, J. Appl. Phys. 103, 104910 (2008).
http://dx.doi.org/10.1063/1.2930878
39.
39. M. Pitkonen, J. Math. Phys. 47, 102901 (2006).
http://dx.doi.org/10.1063/1.2359140
40.
40.Other choices for the definition of size parameter are possible, with the condition that it, together with the shape parameter, fixes the dimensions of the particle. For example, a possibility would be to define the size parameter as the diameter of the particle's circumscribed sphere. Qualitatively, this new definition does not cause any change to our results; quantitatively, we observe that the minima for rods shift to l/L ≈ 0.47 and those for platelets to L/l ≈ 0.32, while there is no change for bowls and dumbbells (since the size parameter remains σ and σ + L, respectively).
41.
41.The reason why a lower lattice constant lowers L* or l* is two-fold: a lower lattice constant means that atoms interact more and hence will have a higher Δf; at the same time it also means that the atom density is higher and thus smaller dimensions are needed to achieve a certain number of atoms.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/13/10.1063/1.3701615
Loading
/content/aip/journal/jcp/136/13/10.1063/1.3701615
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/13/10.1063/1.3701615
2012-04-06
2014-10-31

Abstract

Self-assembly and alignment of anisotropiccolloidal particles are important processes that can be influenced by external electric fields. However, dielectric nanoparticles are generally hard to align this way because of their small size and low polarizability. In this work, we employ the coupled dipole method to show that the minimum size parameter for which a particle may be aligned using an external electric field depends on the dimension ratio that defines the exact shape of the particle. We show, for rods, platelets, bowls, and dumbbells, that the optimal dimension ratio (the dimension ratio for which the size parameter that first allows alignment is minimal) depends on a nontrivial competition between particle bulkiness and anisotropy because more bulkiness implies more polarizable substance and thus higher polarizability, while more anisotropy implies a larger (relative) difference in polarizability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/13/1.3701615.html;jsessionid=9shr3j701nl2c.x-aip-live-06?itemId=/content/aip/journal/jcp/136/13/10.1063/1.3701615&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Bulkiness versus anisotropy: The optimal shape of polarizable Brownian nanoparticles for alignment in electric fields
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/13/10.1063/1.3701615
10.1063/1.3701615
SEARCH_EXPAND_ITEM