1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Auger spectrum of a water molecule after single and double core ionization
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/14/10.1063/1.3700233
1.
1. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature (London) 406, 752 (2000).
http://dx.doi.org/10.1038/35021099
2.
2. K. J. Gaffney and H. N. Chapman, “Imaging atomic structure and dynamics with ultrafast X-ray scattering,” Science 316, 1444 (2007).
http://dx.doi.org/10.1126/science.1135923
3.
3. M. Makris, P. Lambropoulos, and A. Mihelič, “Theory of multiphoton multielectron ionization of xenon under strong 93-eV radiation,” Phys. Rev. Lett. 102, 33002 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.033002
4.
4. N. Rohringer and R. Santra, “X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser,” Phys. Rev. A 76, 033416 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.033416
5.
5. S. Son, L. Young, and R. Santra, “Impact of hollow-atom formation on coherent x-ray scattering at high intensity,” Phys. Rev. A 83, 033402 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.033402
6.
6. R. Santra, N. V. Kryzhevoi, and L. S. Cederbaum, “X-ray two-photon photoelectron spectroscopy: a theoretical study of inner-shell spectra of the organic para-aminophenol molecule,” Phys. Rev. Lett. 103, 013002 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.013002
7.
7. M. Tashiro, M. Ehara, H. Fukuzawa, K. Ueda, C. Buth, N. V. Kryzhevoi, and L. S. Cederbaum, “Molecular double core hole electron spectroscopy for chemical analysis,” J. Chem. Phys. 132, 184302 (2010).
http://dx.doi.org/10.1063/1.3408251
8.
8. L. S. Cederbaum, F. Tarantelli, A. Sgamellotti, and J. Schirmer, “On double vacancies in the core,” J. Chem. Phys. 85, 6513 (1986).
http://dx.doi.org/10.1063/1.451432
9.
9. J. H. D. Eland, M. Tashiro, P. Linusson, M. Ehara, K. Ueda, and R. Feifel, “Double core hole creation and subsequent auger decay in nh3 and ch4 molecules,” Phys. Rev. Lett. 105, 213005 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.213005
10.
10. L. Young, E. P. Kanter, B. Kraessig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. DiMauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt, “Femtosecond electronic response of atoms to ultra-intense X-rays,” Nature (London) 466, 56 (2010).
http://dx.doi.org/10.1038/nature09177
11.
11. L. Fang, M. Hoener, O. Gessner, F. Tarantelli, S. T. Pratt, O. Kornilov, C. Buth, M. Guehr, E. P. Kanter, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, M. Chen, R. Coffee, J. Cryan, M. Glownia, E. Kukk, S. R. Leone, and N. Berrah, “Double core-hole production in N-2: beating the Auger clock,” Phys. Rev. Lett. 105, 083005 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.083005
12.
12. C. Gnodtke, U. Saalmann, and J. M. Rost, “Ionization and charge migration through strong internal fields in clusters exposed to intense x-ray pulses,” Phys. Rev. A 79, 041201 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.041201
13.
13. Z. Jurek and G. Faigel, “The effect of tamper layer on the explosion dynamics of atom clusters,” Eur. Phys. J. D 50, 35 (2008).
http://dx.doi.org/10.1140/epjd/e2008-00189-8
14.
14. Z. Jurek and G. Faigel, “The effect of inhomogenities on single-molecule imaging by hard XFEL pulses,” EPL 86, 68003 (2009).
http://dx.doi.org/10.1209/0295-5075/86/68003
15.
15. V. Carravetta and H. Ågren, “Stieltjes imaging method for molecular auger transition rates - application to the auger spectrum of water,” Phys. Rev. A 35, 1022 (1987).
http://dx.doi.org/10.1103/PhysRevA.35.1022
16.
16. B. Schimmelpfennig, B. Nestmann, and S. Peyerimhoff, “Ab initio calculation of transition rates for autoionization: the Auger spectra of HF and F,” J. Electron Spectrosc. Relat. Phenom. 74, 173 (1995).
http://dx.doi.org/10.1016/0368-2048(95)02373-9
17.
17. R. Colle and S. Simonucci, “Method for calculating Auger decay-rates in molecules,” Phys. Rev. A 39, 6247 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.6247
18.
18. E. Chelkowska and F. Larkins, “Auger-Spectroscopy for molecules—tables of matrix-elements for transition-rate calculations corresponding to an s-type, p-type, or d-type initial hole,” At. Data Nucl. Data Tables 49, 121 (1991).
http://dx.doi.org/10.1016/0092-640X(91)90013-T
19.
19. M. Mitani, O. Takahashi, K. Saito, and S. Iwata, “Theoretical molecular Auger spectra with electron population analysis,” J. Electron Spectrosc. Relat. Phenom. 128, 103 (2003).
http://dx.doi.org/10.1016/S0368-2048(02)00270-0
20.
20. M. Tashiro, K. Ueda, and M. Ehara, “Auger decay of molecular double core-hole state,” J. Chem. Phys. 135, 154307 (2011).
http://dx.doi.org/10.1063/1.3651082
21.
21. P. Demekhin, A. Ehresmann, and V. Sukhorukov, “Single center method: a computational tool for ionization and electronic excitation studies of molecules,” J. Chem. Phys. 134, 024113 (2011).
http://dx.doi.org/10.1063/1.3526026
22.
22. M. Odelius, “Molecular dynamics simulations of fine structure in oxygen K-edge x-ray emission spectra of liquid water and ice,” Phys. Rev. B 79, 144204 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.144204
23.
23. O. Takahashi, M. Odelius, D. Nordlund, A. Nilsson, H. Bluhm, and L. Pettersson, “Auger decay calculations with core-hole excited-state molecular-dynamics simulations of water,” J. Chem. Phys. 124, 064307 (2006).
http://dx.doi.org/10.1063/1.2166234
24.
24. M. Eroms, O. Vendrell, M. Jungen, H. Meyer, and L. Cederbaum, “Nuclear dynamics during the resonant Auger decay of water molecules,” J. Chem. Phys. 130, 154307 (2009).
http://dx.doi.org/10.1063/1.3117902
25.
25. Z. Bao, R. Fink, O. Travnikova, D. Ceolin, S. Svensson, and M. Piancastelli, “Detailed theoretical and experimental description of normal Auger decay in O2,” J. Phys. B 41, 125101 (2008).
http://dx.doi.org/10.1088/0953-4075/41/12/125101
26.
26. H. Siegbahn, L. Asplund, and P. Kelfve, “The Auger electron spectrum of water vapour,” Chem. Phys. Lett. 35, 330 (1975).
http://dx.doi.org/10.1016/0009-2614(75)85615-6
27.
27. R. Pauncz, Spin Eigenfunctions: Construction and Use (Plenum, New York, 1979).
28.
28. In cases where the total spin quantum numbers are irrelevant these additional indices are skipped in the following.
29.
29. M. Deleuze, B. T. Pickup, and J. Delhalle, “Plane wave and orthogonalized plane wave many-body green's function calculations of photoionization intensities,” Mol. Phys. 83, 655 (1994).
http://dx.doi.org/10.1080/00268979400101501
30.
30. R. Gaspar, “Über eine approximation des Hartreefockschen potentials durch eine universelle potentialfunktion,” Acta Phys. Acad. Sci. Hung. 3, 263 (1954).
http://dx.doi.org/10.1007/BF03156228
31.
31. P. Demekhin, D. Omelyanenko, B. Lagutin, V. Sukhorukov, L. Werner, A. Ehresmann, K.-H. Schartner, and H. Schmoranzer, “Investigation of photoionization and photodissociation of an oxygen molecule by the method of coupled differential equations,” Opt. Spectrosc. 102, 318 (2007).
http://dx.doi.org/10.1134/S0030400X07030022
32.
32. J. Sakurai and S. F. Tuan, Modern Quantum Mechanics (Benjamin/Cummings, 1985), Vol. 1.
33.
33. R. Manne and H. Ågren, “Auger transition amplitudes from general many-electron wavefunctions,” Chem. Phys. 93, 201 (1985).
http://dx.doi.org/10.1016/0301-0104(85)80018-5
34.
34. T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
35.
35. T. D. Crawford, C. D. Sherrill, E. F. Valeev, J. T. Fermann, R. A. King, M. L. Leininger, S. T. Brown, C. L. Janssen, E. T. Seidl, J. P. Kenny, and W. D. Allen, “PSI3: an open-source ab initio electronic structure package,” J. Comp. Chem. 28, 1610 (2007).
http://dx.doi.org/10.1002/jcc.20573
36.
36. P. S. Bagus, “Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions,” Phys. Rev. 139, A619 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A619
37.
37. N. V. Kryzhevoi, R. Santra, and L. S. Cederbaum, “Inner-shell single and double ionization potentials of aminophenol isomers,” J. Chem. Phys. 135, 084302 (2011).
http://dx.doi.org/10.1063/1.3624393
38.
38. E. Whittaker and G. Watson, A Course of Modern Analysis (Cambridge University Press, 1952).
39.
39. L. Biedenharn, J. Louck, and P. Carruthers, Angular Momentum in Quantum Physics: Theory and Application, Encyclopedia of Mathematics and its Applications Series, Vol. 8 (Addison-Wesley, Reading, 1981).
40.
40. See supplementary material at http://dx.doi.org/10.1063/1.3700233 for detailed results for initial state energies, the obtained ground state optimized geometry and vibrational mode frequencies, and the HOH bond angle evolution. [Supplementary Material]
41.
41. L. Chernysheva, Computation of Atomic Processes: A Handbook for the ATOM Programs, Bd. 1 (Institute of Physics, 1997).
42.
42. J. McDougall, “The calculation of the terms of the optical spectrum of an atom with one series electron,” Proc. R. Soc. Lond. Ser. A 138, 550 (1932), see http://rspa.royalsocietypublishing.org/content/138/836/550.full.pdf+html.
http://dx.doi.org/10.1098/rspa.1932.0203
43.
43. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, CA, 1996).
44.
44. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02 , Gaussian, Inc., Wallingford, CT, 2009.
45.
45. W. Moddeman, T. Carlson, M. Krause, B. Pullen, W. Bull, and G. K. Schweitz, “Determination of K-LL auger spectra of N2, O2, CO, NO, H2O, and CO,” J. Chem. Phys. 55, 2317 (1971).
http://dx.doi.org/10.1063/1.1676411
46.
46. SLAC National Accelerator Laboratory, “Atomic, molecular & optical science,” 2012, see http://lcls.slac.stanford.edu/amo/.
47.
47. W. McMaster, N. del Grande, J. Mallett, and J. Hubbell, “Compilation of X-ray cross sections,” Lawrence Radiation Laboratory Report No. UCRL-50174, Sec. II, Rev. 1 (1969).
48.
48. P. Kolorenč and V. Averbukh, “K-shell Auger lifetime variation in doubly ionized Ne and first row hydrides,” J. Chem. Phys. 135, 134314 (2011).
http://dx.doi.org/10.1063/1.3646204
49.
49. C. P. Bhalla, N. O. Folland, and M. A. Hein, “Theoretical K-shell Auger rates, transition energies, and fluorescence yields for multiply ionized neon,” Phys. Rev. A 8, 649 (1973).
http://dx.doi.org/10.1103/PhysRevA.8.649
50.
50. V. Yarzhemsky and A. Sgamellotti, “Auger rates of second-row atoms calculated by many-body perturbation theory,” J. Electron Spectrosc. Relat. Phenom. 125, 13 (2002).
http://dx.doi.org/10.1016/S0368-2048(02)00042-7
51.
51. H. P. Kelly, “K Auger rates calculated for Ne+,” Phys. Rev. A. 11, 556 (1975).
http://dx.doi.org/10.1103/PhysRevA.11.556
52.
52. P. Pelicon, I. Čadež, M. Žitnik, Ž. Šmit, S. Dolenc, A. Mühleisen, and R. I. Hall, “Formation of the hollow 1so1S state of Ne2+ by electron impact: observation by means of an Auger hypersatellite,” Phys. Rev. A 62, 022704 (2000).
http://dx.doi.org/10.1103/PhysRevA.62.022704
53.
53. M. H. Chen, “Auger transition rates and fluorescence yields for the double- K -hole state,” Phys. Rev. A 44, 239 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.239
54.
54. R. Sankari, M. Ehara, H. Nakatsuji, Y. Senba, K. Hosokawa, H. Yoshida, A. D. Fanis, Y. Tamenori, S. Aksela, and K. Ueda, “Vibrationally resolved O 1s photoelectron spectrum of water,” Chem. Phys. Lett. 380, 647 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.08.108
55.
55. J. Niskanen, P. Norman, H. Aksela, and H. Agren, “Relativistic contributions to single and double core electron ionization energies of noble gases,” J. Chem. Phys. 135, 054310 (2011).
http://dx.doi.org/10.1063/1.3621833
56.
56. P. Kolorenč, V. Averbukh, K. Gokhberg, and L. S. Cederbaum, “Ab initio calculation of interatomic decay rates of excited doubly ionized states in clusters,” J. Chem. Phys. 129, 244102 (2008).
http://dx.doi.org/10.1063/1.3043437
57.
57. M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, “Semiclassical description of nuclear dynamics in x-ray emission of water,” Phys. Rev. B 82, 245115 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245115
58.
58. M. P. Ljungberg, L. G. M. Pettersson, and A. Nilsson, “Vibrational interference effects in x-ray emission of a model water dimer: implications for the interpretation of the liquid spectrum,” J. Chem. Phys. 134, 044513 (2011).
http://dx.doi.org/10.1063/1.3533956
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/14/10.1063/1.3700233
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Cuts through the potential energy surfaces for single (top) and double core (bottom) ionized water. (Left) Both hydrogen atoms are at equilibrium distance d OH = 0.96a 0 to the oxygen for different HOH angles Θ. (Right) One hydrogen atom is fixed at d OH = 0.96a 0 and the other is at variable distances to the oxygen atom, while Θ is at equilibrium value of 103.5°.

Image of FIG. 2.

Click to view

FIG. 2.

Illustration of different ionization pathways. The total Auger spectrum is obtained from a superposition of spectra resulting from different trajectories along the neutral, single core ionized, and double core ionized states. Here, as an example, 4 pathways contributing to the single and the double core Auger spectrum are illustrated.

Image of FIG. 3.

Click to view

FIG. 3.

Integrated population of the neutral N 0(t), single core ionized N 1(t), and double core ionized states N 2(t). A Gaussian shaped x-ray pulse centered at time t = 0 fs, width of 10 fs FWHM and a photon energy of 1 keV was assumed.

Image of FIG. 4.

Click to view

FIG. 4.

Dynamics of a water molecule after single (middle row) and double (bottom row) core ionization. The upper left plot shows the evolution of the OH-bond length d OH for the single and double core ionized state. The other plots show cuts through the electron density in the molecular plane (contour lines) at three selected times for the neutral, single core ionized, and double core ionized state. Crosses denote the positions of the nuclei; triangles mark the neutral equilibrium positions of the nuclei. All plots refer to the trajectory starting from equilibrium geometry with zero initial velocities.

Image of FIG. 5.

Click to view

FIG. 5.

Single core Auger spectrum. Comparison of experimental spectrum45 (dashed line) and calculated spectrum for peak intensity I = 1.6 × 1016 W/cm2 with (red line) and without (green line) nuclei dynamics. The position of the peaks were labeled according to their dominant hole configurations.

Image of FIG. 6.

Click to view

FIG. 6.

(Left) Instantaneous single core Auger spectra after 0 fs, 2 fs, and 4 fs of the single core ionized state. (Right) Instantaneous double core Auger spectra after 0 fs, 1 fs, and 2 fs of the double core ionized state. For the double core Auger spectrum, nuclear motion was calculated only for the double core ionized state. The fast dissociation in the double core ionized state is reflected by the fast shift of the Auger spectrum to higher energies.

Image of FIG. 7.

Click to view

FIG. 7.

Double core Auger spectrum. Calculated spectrum for peak intensity I = 1.6 × 1018 W/cm2 with (red line) and without (green line) nuclei dynamics. The positions of the peaks are labeled according to their dominant hole configurations.

Image of FIG. 8.

Click to view

FIG. 8.

Single and double core Auger spectrum for different peak intensities. At peak intensity 1.6 × 1018 W/cm2 the two parts of the Auger spectrum are at comparable intensity.

Tables

Generic image for table

Click to view

Table I.

Calculated total photoionization cross sections for atomic neon compared to values from Ref. 47.

Generic image for table

Click to view

Table II.

Calculated total and partial photoionization cross sections for water at 1 keV. The indices 0, 1, and 2 denote the neutral, single core ionized, and double core ionized state, respectively.

Generic image for table

Click to view

Table III.

Comparison of calculated Auger decay rates for singly and doubly core ionized neon in 10−3 a.u.

Generic image for table

Click to view

Table IV.

Total and partial Auger transition rates of water (single core) for the main transition channels (MP2 optimized geometry) compared to calculations from Carravetta and Ågren 15 and Siegbahn et al. 26

Generic image for table

Click to view

Table V.

Total and partial Auger transition rates of water (double core) for the main transition channels (MP2 optimized equilibrium geometry).

Generic image for table

Click to view

Table VI.

Total probability of single and double core ionization for different flux intensities.

Loading

Article metrics loading...

/content/aip/journal/jcp/136/14/10.1063/1.3700233
2012-04-09
2014-04-18

Abstract

The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initiomolecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schrödinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/14/1.3700233.html;jsessionid=2gk5t3rkeatne.x-aip-live-03?itemId=/content/aip/journal/jcp/136/14/10.1063/1.3700233&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Auger spectrum of a water molecule after single and double core ionization
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/14/10.1063/1.3700233
10.1063/1.3700233
SEARCH_EXPAND_ITEM