Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature (London) 406, 752 (2000).
2. K. J. Gaffney and H. N. Chapman, “Imaging atomic structure and dynamics with ultrafast X-ray scattering,” Science 316, 1444 (2007).
3. M. Makris, P. Lambropoulos, and A. Mihelič, “Theory of multiphoton multielectron ionization of xenon under strong 93-eV radiation,” Phys. Rev. Lett. 102, 33002 (2009).
4. N. Rohringer and R. Santra, “X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser,” Phys. Rev. A 76, 033416 (2007).
5. S. Son, L. Young, and R. Santra, “Impact of hollow-atom formation on coherent x-ray scattering at high intensity,” Phys. Rev. A 83, 033402 (2011).
6. R. Santra, N. V. Kryzhevoi, and L. S. Cederbaum, “X-ray two-photon photoelectron spectroscopy: a theoretical study of inner-shell spectra of the organic para-aminophenol molecule,” Phys. Rev. Lett. 103, 013002 (2009).
7. M. Tashiro, M. Ehara, H. Fukuzawa, K. Ueda, C. Buth, N. V. Kryzhevoi, and L. S. Cederbaum, “Molecular double core hole electron spectroscopy for chemical analysis,” J. Chem. Phys. 132, 184302 (2010).
8. L. S. Cederbaum, F. Tarantelli, A. Sgamellotti, and J. Schirmer, “On double vacancies in the core,” J. Chem. Phys. 85, 6513 (1986).
9. J. H. D. Eland, M. Tashiro, P. Linusson, M. Ehara, K. Ueda, and R. Feifel, “Double core hole creation and subsequent auger decay in nh3 and ch4 molecules,” Phys. Rev. Lett. 105, 213005 (2010).
10. L. Young, E. P. Kanter, B. Kraessig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. DiMauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt, “Femtosecond electronic response of atoms to ultra-intense X-rays,” Nature (London) 466, 56 (2010).
11. L. Fang, M. Hoener, O. Gessner, F. Tarantelli, S. T. Pratt, O. Kornilov, C. Buth, M. Guehr, E. P. Kanter, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, M. Chen, R. Coffee, J. Cryan, M. Glownia, E. Kukk, S. R. Leone, and N. Berrah, “Double core-hole production in N-2: beating the Auger clock,” Phys. Rev. Lett. 105, 083005 (2010).
12. C. Gnodtke, U. Saalmann, and J. M. Rost, “Ionization and charge migration through strong internal fields in clusters exposed to intense x-ray pulses,” Phys. Rev. A 79, 041201 (2009).
13. Z. Jurek and G. Faigel, “The effect of tamper layer on the explosion dynamics of atom clusters,” Eur. Phys. J. D 50, 35 (2008).
14. Z. Jurek and G. Faigel, “The effect of inhomogenities on single-molecule imaging by hard XFEL pulses,” EPL 86, 68003 (2009).
15. V. Carravetta and H. Ågren, “Stieltjes imaging method for molecular auger transition rates - application to the auger spectrum of water,” Phys. Rev. A 35, 1022 (1987).
16. B. Schimmelpfennig, B. Nestmann, and S. Peyerimhoff, “Ab initio calculation of transition rates for autoionization: the Auger spectra of HF and F,” J. Electron Spectrosc. Relat. Phenom. 74, 173 (1995).
17. R. Colle and S. Simonucci, “Method for calculating Auger decay-rates in molecules,” Phys. Rev. A 39, 6247 (1989).
18. E. Chelkowska and F. Larkins, “Auger-Spectroscopy for molecules—tables of matrix-elements for transition-rate calculations corresponding to an s-type, p-type, or d-type initial hole,” At. Data Nucl. Data Tables 49, 121 (1991).
19. M. Mitani, O. Takahashi, K. Saito, and S. Iwata, “Theoretical molecular Auger spectra with electron population analysis,” J. Electron Spectrosc. Relat. Phenom. 128, 103 (2003).
20. M. Tashiro, K. Ueda, and M. Ehara, “Auger decay of molecular double core-hole state,” J. Chem. Phys. 135, 154307 (2011).
21. P. Demekhin, A. Ehresmann, and V. Sukhorukov, “Single center method: a computational tool for ionization and electronic excitation studies of molecules,” J. Chem. Phys. 134, 024113 (2011).
22. M. Odelius, “Molecular dynamics simulations of fine structure in oxygen K-edge x-ray emission spectra of liquid water and ice,” Phys. Rev. B 79, 144204 (2009).
23. O. Takahashi, M. Odelius, D. Nordlund, A. Nilsson, H. Bluhm, and L. Pettersson, “Auger decay calculations with core-hole excited-state molecular-dynamics simulations of water,” J. Chem. Phys. 124, 064307 (2006).
24. M. Eroms, O. Vendrell, M. Jungen, H. Meyer, and L. Cederbaum, “Nuclear dynamics during the resonant Auger decay of water molecules,” J. Chem. Phys. 130, 154307 (2009).
25. Z. Bao, R. Fink, O. Travnikova, D. Ceolin, S. Svensson, and M. Piancastelli, “Detailed theoretical and experimental description of normal Auger decay in O2,” J. Phys. B 41, 125101 (2008).
26. H. Siegbahn, L. Asplund, and P. Kelfve, “The Auger electron spectrum of water vapour,” Chem. Phys. Lett. 35, 330 (1975).
27. R. Pauncz, Spin Eigenfunctions: Construction and Use (Plenum, New York, 1979).
28. In cases where the total spin quantum numbers are irrelevant these additional indices are skipped in the following.
29. M. Deleuze, B. T. Pickup, and J. Delhalle, “Plane wave and orthogonalized plane wave many-body green's function calculations of photoionization intensities,” Mol. Phys. 83, 655 (1994).
30. R. Gaspar, “Über eine approximation des Hartreefockschen potentials durch eine universelle potentialfunktion,” Acta Phys. Acad. Sci. Hung. 3, 263 (1954).
31. P. Demekhin, D. Omelyanenko, B. Lagutin, V. Sukhorukov, L. Werner, A. Ehresmann, K.-H. Schartner, and H. Schmoranzer, “Investigation of photoionization and photodissociation of an oxygen molecule by the method of coupled differential equations,” Opt. Spectrosc. 102, 318 (2007).
32. J. Sakurai and S. F. Tuan, Modern Quantum Mechanics (Benjamin/Cummings, 1985), Vol. 1.
33. R. Manne and H. Ågren, “Auger transition amplitudes from general many-electron wavefunctions,” Chem. Phys. 93, 201 (1985).
34. T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90, 1007 (1989).
35. T. D. Crawford, C. D. Sherrill, E. F. Valeev, J. T. Fermann, R. A. King, M. L. Leininger, S. T. Brown, C. L. Janssen, E. T. Seidl, J. P. Kenny, and W. D. Allen, “PSI3: an open-source ab initio electronic structure package,” J. Comp. Chem. 28, 1610 (2007).
36. P. S. Bagus, “Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions,” Phys. Rev. 139, A619 (1965).
37. N. V. Kryzhevoi, R. Santra, and L. S. Cederbaum, “Inner-shell single and double ionization potentials of aminophenol isomers,” J. Chem. Phys. 135, 084302 (2011).
38. E. Whittaker and G. Watson, A Course of Modern Analysis (Cambridge University Press, 1952).
39. L. Biedenharn, J. Louck, and P. Carruthers, Angular Momentum in Quantum Physics: Theory and Application, Encyclopedia of Mathematics and its Applications Series, Vol. 8 (Addison-Wesley, Reading, 1981).
40. See supplementary material at for detailed results for initial state energies, the obtained ground state optimized geometry and vibrational mode frequencies, and the HOH bond angle evolution. [Supplementary Material]
41. L. Chernysheva, Computation of Atomic Processes: A Handbook for the ATOM Programs, Bd. 1 (Institute of Physics, 1997).
42. J. McDougall, “The calculation of the terms of the optical spectrum of an atom with one series electron,” Proc. R. Soc. Lond. Ser. A 138, 550 (1932), see
43. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, CA, 1996).
44. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02 , Gaussian, Inc., Wallingford, CT, 2009.
45. W. Moddeman, T. Carlson, M. Krause, B. Pullen, W. Bull, and G. K. Schweitz, “Determination of K-LL auger spectra of N2, O2, CO, NO, H2O, and CO,” J. Chem. Phys. 55, 2317 (1971).
46. SLAC National Accelerator Laboratory, “Atomic, molecular & optical science,” 2012, see
47. W. McMaster, N. del Grande, J. Mallett, and J. Hubbell, “Compilation of X-ray cross sections,” Lawrence Radiation Laboratory Report No. UCRL-50174, Sec. II, Rev. 1 (1969).
48. P. Kolorenč and V. Averbukh, “K-shell Auger lifetime variation in doubly ionized Ne and first row hydrides,” J. Chem. Phys. 135, 134314 (2011).
49. C. P. Bhalla, N. O. Folland, and M. A. Hein, “Theoretical K-shell Auger rates, transition energies, and fluorescence yields for multiply ionized neon,” Phys. Rev. A 8, 649 (1973).
50. V. Yarzhemsky and A. Sgamellotti, “Auger rates of second-row atoms calculated by many-body perturbation theory,” J. Electron Spectrosc. Relat. Phenom. 125, 13 (2002).
51. H. P. Kelly, “K Auger rates calculated for Ne+,” Phys. Rev. A. 11, 556 (1975).
52. P. Pelicon, I. Čadež, M. Žitnik, Ž. Šmit, S. Dolenc, A. Mühleisen, and R. I. Hall, “Formation of the hollow 1so1S state of Ne2+ by electron impact: observation by means of an Auger hypersatellite,” Phys. Rev. A 62, 022704 (2000).
53. M. H. Chen, “Auger transition rates and fluorescence yields for the double- K -hole state,” Phys. Rev. A 44, 239 (1991).
54. R. Sankari, M. Ehara, H. Nakatsuji, Y. Senba, K. Hosokawa, H. Yoshida, A. D. Fanis, Y. Tamenori, S. Aksela, and K. Ueda, “Vibrationally resolved O 1s photoelectron spectrum of water,” Chem. Phys. Lett. 380, 647 (2003).
55. J. Niskanen, P. Norman, H. Aksela, and H. Agren, “Relativistic contributions to single and double core electron ionization energies of noble gases,” J. Chem. Phys. 135, 054310 (2011).
56. P. Kolorenč, V. Averbukh, K. Gokhberg, and L. S. Cederbaum, “Ab initio calculation of interatomic decay rates of excited doubly ionized states in clusters,” J. Chem. Phys. 129, 244102 (2008).
57. M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, “Semiclassical description of nuclear dynamics in x-ray emission of water,” Phys. Rev. B 82, 245115 (2010).
58. M. P. Ljungberg, L. G. M. Pettersson, and A. Nilsson, “Vibrational interference effects in x-ray emission of a model water dimer: implications for the interpretation of the liquid spectrum,” J. Chem. Phys. 134, 044513 (2011).

Data & Media loading...


Article metrics loading...



The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initiomolecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schrödinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd