1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: The highest frequency hydrogen bond vibration and an experimental value for the dissociation energy of formic acid dimer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/15/10.1063/1.4704827
1.
1. E. J. Bohac, M. D. Marshall, and R. E. Miller, J. Chem. Phys. 96, 6681 (1992).
http://dx.doi.org/10.1063/1.462578
2.
2. A. S. Pine and B. J. Howard, J. Chem. Phys. 84, 590 (1986).
http://dx.doi.org/10.1063/1.450605
3.
3. B. E. Rocher-Casterline, L. C. Ch'ng, A. K. Mollner, and H. Reisler, J. Chem. Phys. 134, 211101 (2011).
http://dx.doi.org/10.1063/1.3598339
4.
4. T. Bürgi, T. Droz, and S. Leutwyler, Chem. Phys. Lett. 246, 291 (1995).
http://dx.doi.org/10.1016/0009-2614(95)01107-K
5.
5. M. Mons, I. Dimicoli, and F. Piuzzi, Int. Rev. Phys. Chem. 21, 101 (2002).
http://dx.doi.org/10.1080/01442350110104310
6.
6. A. Fujii et al. Phys. Chem. Chem. Phys. 13, 14131 (2011).
http://dx.doi.org/10.1039/c1cp20203k
7.
7. F. Ito, Chem. Phys. Lett. 447, 202 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.09.037
8.
8. M. Ortlieb and M. Havenith, J. Phys. Chem. A 111, 7355 (2007).
http://dx.doi.org/10.1021/jp070763+
9.
9. Z. Xue and M. A. Suhm, J. Chem. Phys. 131, 054301 (2009).
http://dx.doi.org/10.1063/1.3191728
10.
10. R. Georges et al. Chem. Phys. 305, 187 (2004).
http://dx.doi.org/10.1016/j.chemphys.2004.06.027
11.
11. V. V. Matylitsky, C. Riehn, M. F. Gelin, and B. Brutschy, J. Chem. Phys. 119, 10553 (2003).
http://dx.doi.org/10.1063/1.1620505
12.
12. M. Quack and M. A. Suhm, J. Chem. Phys. 95, 28 (1991).
http://dx.doi.org/10.1063/1.461486
13.
13. R. M. Balabin, J. Phys. Chem. A 113, 4910 (2009).
http://dx.doi.org/10.1021/jp9002643
14.
14. A. A. Vigasin, Infrared Phys. 32, 461 (1991).
http://dx.doi.org/10.1016/0020-0891(91)90135-3
15.
15. J. B. Togeas, J. Phys. Chem. A 109, 5438 (2005).
http://dx.doi.org/10.1021/jp058004j
16.
16. R. W. Larsen and M. A. Suhm, Phys. Chem. Chem. Phys. 12, 8152 (2010).
http://dx.doi.org/10.1039/b925578h
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4704827 for experimental anharmonic dimer fundamentals (S1), band positions observed in this work (S2), FTIR jet spectra of deuterated isotopologues (1S), matrix of measured and assumed hydrogen bond mode anharmonicities (S3), Kp values from previous vapor density and spectroscopic investigations (S4), and predicted thermodynamic data up to 300 K (S5). [Supplementary Material]
18.
18. G. L. Carlson, R. E. Witkowski, and W. G. Fateley, Spectrochim. Acta 22, 1117 (1966).
http://dx.doi.org/10.1016/0371-1951(66)80202-3
19.
19. D. Clague and A. Novak, J. Mol. Struct. 5, 149 (1970).
http://dx.doi.org/10.1016/0022-2860(70)87030-2
20.
20. J. E. Bertie and K. H. Michaelian, J. Chem. Phys. 76, 886 (1982).
http://dx.doi.org/10.1063/1.443061
21.
21. S. T. Shipman et al., Phys. Chem. Chem. Phys. 9, 4572 (2007).
http://dx.doi.org/10.1039/b704900e
22.
22. K. Marushkevich, L. Khriachtchev, J. Lundell, A. Domanskaya, and M. Räsänen, J. Phys. Chem. 114, 3495 (2010).
http://dx.doi.org/10.1021/jp911515f
23.
23. J. E. Bertie, K. H. Michaelian, H. H. Eysel, and D. Hager, J. Chem. Phys. 85, 4779 (1986).
http://dx.doi.org/10.1063/1.451737
24.
24. J. Vander Auwera, J. Mol. Spectrosc. 155, 136 (1992).
http://dx.doi.org/10.1016/0022-2852(92)90553-Z
25.
25. G. L. Barnes, S. M. Squires, and E. L. Sibert III, J. Phys. Chem. B 112, 595 (2008).
http://dx.doi.org/10.1021/jp075376e
26.
26. J. Vander Auwera, K. Didriche, A. Perrin, and F. Keller, J. Chem. Phys. 126, 124311 (2007).
http://dx.doi.org/10.1063/1.2712439
27.
27. A. S. Coolidge, J. Am. Chem. Soc. 50, 2166 (1928).
http://dx.doi.org/10.1021/ja01395a015
28.
28. A. Winkler and P. Hess, J. Am. Chem. Soc. 116, 9233 (1994).
http://dx.doi.org/10.1021/ja00099a046
29.
29. M. A. Suhm, Ber. Bunsenges. Phys. Chem. 99, 1159 (1995).
30.
30. J. Chao and B. J. Zwolinski, J. Phys. Chem. Ref. Data 7, 363 (1978).
http://dx.doi.org/10.1063/1.555571
31.
31. Z. Xue and M. A. Suhm, Mol. Phys. 108, 2279 (2010).
http://dx.doi.org/10.1080/00268976.2010.508600
32.
32. C. Leforestier, A. Tekin, G. Jansen, and M. Herman, J. Chem. Phys. 135, 234306 (2011).
http://dx.doi.org/10.1063/1.3668283
33.
33. N. R. Brinkmann, G. S. Tschumper, G. Yan, and H. F. Schaefer III, J. Phys. Chem. A 107, 10208 (2003).
http://dx.doi.org/10.1021/jp031043f
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/15/10.1063/1.4704827
Loading
/content/aip/journal/jcp/136/15/10.1063/1.4704827
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/15/10.1063/1.4704827
2012-04-19
2014-07-13

Abstract

The highest frequency hydrogen bond fundamental of formic acid dimer, ν24 (Bu), is experimentally located at 264 cm−1. FTIR spectra of this in-plane bending mode of (HCOOH)2 and band centers of its symmetric D isotopologues (isotopomers) recorded in a supersonic slit jet expansion are presented. Comparison to earlier studies at room temperature reveals the large influence of thermal excitation on the band maximum. Together with three Bu combination states involving hydrogen bond fundamentals and with recent progress for the Raman-active modes, this brings into reach an accurate statistical thermodynamics treatment of the dimerization process up to room temperature. We obtain D 0 = 59.5(5) kJ/mol as the best experimental estimate for the dimer dissociation energy at 0 K. Further improvements have to wait for a more consistent determination of the room temperature equilibrium constant.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/15/1.4704827.html;jsessionid=5ln8om8dc2eo2.x-aip-live-02?itemId=/content/aip/journal/jcp/136/15/10.1063/1.4704827&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: The highest frequency hydrogen bond vibration and an experimental value for the dissociation energy of formic acid dimer
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/15/10.1063/1.4704827
10.1063/1.4704827
SEARCH_EXPAND_ITEM