banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus
Rent this article for
View: Figures


Image of FIG. 1.
FIG. 1.

Light-harvesting apparatus in purple bacteria. Illustration of spherical chromatophore vesicle from Rh. sphaeroides showing organization of light-harvesting complexes, LH2, and light-harvesting-reaction center complex (LH1-RC). Architecture and arrangement of constituent chromophores based on AFM images. Reprinted with permission from M. Sener, J. Olsen, C. Hunter, K. Schulten, Proc. Natl. Acad. Sci. U.S.A., Vol. 104, Page 15723, 2007.

Image of FIG. 2.
FIG. 2.

Dipole moment orientation used in these models is shown in top right. Optimal number of elements per ring as found by a genetic algorithm. Average trapping time as a function of the number of elements, N, in each ring. The diameter of each ring is 5 nm. The top row of images shows the strength of electrostatic coupling (lines between sites). Dashed lines correspond to >5 cm−1 and <10 cm−1, dotted lines to >10 cm−1 and <20 cm−1, and thick lines to >20 cm−1. Transition dipole at each site is normal to the plane. Color of connecting lines indicates the dephasing rate between two sites. Color of circles at each site corresponds to their energies. The bottom row of images shows the average residence time at each site, indicated by the color of the circles. The average trapping time is the sum of the average residence times at each site. The donor and trap states are labeled.

Image of FIG. 3.
FIG. 3.

Chain of rings versus chain of individual chromophores. Comparison of the disorder between rings (left) and between chromophores (right) in a linear arrangement. Total distance from donor to trap is approximately the same in each case (∼32 nm). Δr is the maximum, random displacement in both the x and y direction.

Image of FIG. 4.
FIG. 4.

Rings are robust to spatial disorder. Plot of average trapping time versus static disorder between rings (red) and single sites (blue) from Figure 3. Error bars for ring arrays are based on five runs through the optimization code. Error bars for array of single sites based on 20 runs through the optimization code. Outliers larger than 5σ were removed from the analysis. Single site arrays were fit to third-order polynomial, while ring arrays were fit to a least squares regression line. Inset shows a narrower window of trapping times (maximum of 400 ps). Arrows on the left of the inset indicate the mean residence time with no spatial disorder between rings. The green bar indicates approximate excited-state lifetime of bacteriochlorophyll a, which represents the upper limit of relaxation of the sites back to the ground state. The linear array of sites performs better than the linear array of rings with no spatial disorder, but is significantly less robust to imperfections in positioning.

Image of FIG. 5.
FIG. 5.

Grid-like array of chromophores is highly inefficient. Excitonic transfer through a grid-like arrangement of sites after optimization. Left: Colors of circles represent site energies. Color of lines represent dephasing rate. Right: Color represent mean residence time at each site. A significant amount of time is “wasted” at sites that do not directly link the donor to acceptor, i.e., sites 7, 13, and 19.

Image of FIG. 6.
FIG. 6.

Two-dimensional packing is more robust to spatial disorder than linear chains. Electrostatic coupling between staggered (left) versus linear (right) in the presence of spatial disorder between rings for a 7-ring system. Thin lines indicate weak coupling (>5 cm−1 and <10 cm−1), medium lines indicate intermediate coupling (>10 cm−1 and <20 cm−1), and thick lines indicates strong coupling (>20 cm−1). Staggered arrangement maintains non-negligible coupling strength and hence a path from donor to acceptor through multiple, neighboring rings. Linear arrangement more easily forms breaks, which may effectively block energy transfer across large distances. Bottom right: spectrum calculated by diagonalizing the system Hamiltonian. Energy spans approximately 200 cm−1 in each case—a major role of coupling is to break site degeneracy and broaden the spectrum for efficient absorption of solar flux.

Image of FIG. 7.
FIG. 7.

Near-optimal tapping is achieved without fine-tuning the system and bath. Left: Exciton transfer optimization achieved by a genetic algorithm to minimize the average trapping time as a function of the mutual dephasing between sites, trapping rate, and site energies. In the case of three rings in this arrangement, the optimal trapping time was found to be 63 ps. Right: Keeping the dephasing between sites constant and the site energies identical, the optimal trapping time is found to be ∼70 ps. This indicates that fine-tuning of the system and the system-bath interactions is not necessary to achieve near-optimal transfer efficiency.

Image of FIG. 8.
FIG. 8.

Quantum transport is robust to static energetic disorder. Comparison of classical and quantum transport in the absence (a) and presence (b) of static energetic disorder—difference in energies at each site. (a) When the site energies are degenerate, classical transport predicts a shorter trapping time—near zero line width. Quantum transport predicts a slower trapping time by about a factor of three, but at a modest value of the dephasing rate. (b) When the site energies are non-degenerate, classical transport undergoes a dramatic shift in the optimal line width. For the quantum case, changes in the optimal dephasing rate and trapping rate are negligible. In this case, the quantum transport is faster and significantly more robust to changes in site energies.


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus