1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/18/10.1063/1.4712026
1.
1. C. A. Angell, Science 267, 1924 (1995).
http://dx.doi.org/10.1126/science.267.5206.1924
2.
2. P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
3.
3. T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.1045
4.
4. W. Götze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).
http://dx.doi.org/10.1088/0034-4885/55/3/001
5.
5. D. Chandler and J. P. Garrahan, Annu. Rev. Phys. Chem. 61, 191 (2010).
http://dx.doi.org/10.1146/annurev.physchem.040808.090405
6.
6. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011).
7.
7. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science 287, 627 (2000).
http://dx.doi.org/10.1126/science.287.5453.627
8.
8. A. S. Keys, A. R. Abate, S. C. Glotzer, and D. J. Durian, Nat. Phys. 3, 260 (2007).
http://dx.doi.org/10.1038/nphys572
9.
9. J. Hansen and I. McDonald, Theory of Simple Liquids, 3rd ed. (Academic, Amsterdam, 2006).
10.
10. J. P. Garrahan and D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 100, 9710 (2003).
http://dx.doi.org/10.1073/pnas.1233719100
11.
11. G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. 53, 1244 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.1244
12.
12. F. Ritort and P. Sollich, Adv. Phys. 52, 219 (2003).
http://dx.doi.org/10.1080/0001873031000093582
13.
13. W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1376
14.
14. A. S. Keys, L. O. Hedges, J. P. Garrahan, S. C. Glotzer, and D. Chandler, Phys. Rev. X 1, 021013 (2011).
http://dx.doi.org/10.1103/PhysRevX.1.021013
15.
15. K. Vollmayr-Lee, J. Chem. Phys. 121, 4781 (2004).
http://dx.doi.org/10.1063/1.1778155
16.
16. M. Merolle, J. P. Garrahan, and D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 102, 10837 (2005).
http://dx.doi.org/10.1073/pnas.0504820102
17.
17. R. L. Jack, J. P. Garrahan, and D. Chandler, J. Chem. Phys. 125, 184509 (2006).
http://dx.doi.org/10.1063/1.2374885
18.
18. J. P. Garrahan, L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, and F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.195702
19.
19. J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, and F. van Wijland, J. Phys. A 42, 075007 (2009).
http://dx.doi.org/10.1088/1751-8113/42/7/075007
20.
20. Y. S. Elmatad, R. L. Jack, D. Chandler, and J. P. Garrahan, Proc. Natl. Acad. Sci. U.S.A. 107, 12793 (2010).
http://dx.doi.org/10.1073/pnas.1006306107
21.
21. T. Speck and J. Garrahan, Eur. Phys. J. B 79, 1 (2011).
http://dx.doi.org/10.1140/epjb/e2010-10800-x
22.
22. L. O. Hedges, R. L. Jack, J. P. Garrahan, and D. Chandler, Science 323, 1309 (2009).
http://dx.doi.org/10.1126/science.1166665
23.
23. E. Pitard, V. Lecomte, and F. van Wijland, EPL 96, 56002 (2011).
http://dx.doi.org/10.1209/0295-5075/96/56002
24.
24. R. L. Jack and J. P. Garrahan, Phys. Rev. E 81, 011111 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.011111
25.
25. J. P. Garrahan and I. Lesanovsky, Phys. Rev. Lett. 104, 160601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.160601
26.
26. J. Jäckle and S. Eisinger, Z. Phys. B 84, 115 (1991).
http://dx.doi.org/10.1007/BF01453764
27.
27. R. Yamamoto and W. Kob, Phys. Rev. E 61, 5473 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.5473
28.
28. L. Berthier and G. Tarjus, Phys. Rev. E 82, 031502 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.031502
29.
29. Y. S. Elmatad, D. Chandler, and J. P. Garrahan, J. Phys. Chem. B 114, 1711317119 (2010).
http://dx.doi.org/10.1021/jp1076438
30.
30. S. Karmakar, C. Dasgupta, and S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009).
http://dx.doi.org/10.1073/pnas.0811082106
31.
31. F. Stillinger and T. Weber, Science 225, 983 (1984).
http://dx.doi.org/10.1126/science.225.4666.983
32.
32. Y. S. Elmatad, D. Chandler, and J. P. Garrahan, J. Phys. Chem. B 113, 55635567 (2009).
http://dx.doi.org/10.1021/jp810362g
33.
33. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987).
34.
34. A. Widmer-Cooper, P. Harrowell, and H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135701
35.
35. J. R. Fernández and P. Harrowell, J. Phys. Chem. B 108, 6850 (2004).
http://dx.doi.org/10.1021/jp037660l
36.
36. D. Coslovich and G. Pastore, J. Chem. Phys. 127, 124504 (2007).
http://dx.doi.org/10.1063/1.2773716
37.
37. U. R. Pedersen, T. B. Schroder, J. C. Dyre, and P. Harrowell, Phys. Rev. Lett. 104, 105701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.105701
38.
38. M. Vogel and S. C. Glotzer, Phys. Rev. Lett. 92, 255901 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.255901
39.
39. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).
http://dx.doi.org/10.1088/0953-8984/20/37/373101
40.
40. M. Goldstein, J. Chem. Phys. 51, 3728 (1969).
http://dx.doi.org/10.1063/1.1672587
41.
41. J. A. R. Fris, G. A. Appignanesi, and E. R. Weeks, Phys. Rev. Lett. 107, 065704 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.065704
42.
42. Y. Gebremichael, M. Vogel, and S. C. Glotzer, J. Chem. Phys. 120, 4415 (2004).
http://dx.doi.org/10.1063/1.1644539
43.
43. K. Chen, M. L. Manning, P. J. Yunker, W. G. Ellenbroek, Z. Zhang, A. J. Liu, and A. G. Yodh, Phys. Rev. Lett. 107, 108301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.108301
44.
44. R. L. Jack, L. O. Hedges, J. P. Garrahan, and D. Chandler, Phys. Rev. Lett. 107, 275702 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.275702
45.
45. S. Plimpton, J. Comp. Phys. 117, 1 (1995), see http://lammps.sandia.gov.
http://dx.doi.org/10.1006/jcph.1995.1039
46.
46. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.170201
47.
47. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. (Academic, San Diego, 2002).
48.
48. P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Annu. Rev. Phys. Chem. 53, 291 (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.082301.113146
49.
49. C. Dellago, P. G. Bolhuis, and P. L. Geissler, Adv. Chem. Phys. 123, 1 (2002).
http://dx.doi.org/10.1002/0471231509
50.
50. M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).
http://dx.doi.org/10.1063/1.2978177
51.
51. D. D. L. Minh and J. D. Chodera, J. Chem. Phys. 131, 134110 (2009).
http://dx.doi.org/10.1063/1.3242285
52.
52. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.784
53.
53.The method employed here to determine mobile particles is slightly different from Ref. 14. As a consequence the energy Ja scales differently with length scale a. We have checked that dynamics is still hierarchical, JaJ1 ∝ ln a, with J1 ≃ 5.4 reported in Ref. 14.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/18/10.1063/1.4712026
Loading
/content/aip/journal/jcp/136/18/10.1063/1.4712026
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/18/10.1063/1.4712026
2012-05-14
2014-08-30

Abstract

Recent progress has demonstrated that trajectory space for both kinetically constrained lattice models and atomistic models can be partitioned into a liquid-like and an inactive basin with a non-equilibrium phase transition separating these behaviors. Recent work has also established that excitations in atomistic models have statistics and dynamics like those in a specific class of kinetically constrained models. But it has not been known whether the non-equilibrium phase transitions occurring in the two classes of models have similar origins. Here, we show that the origin is indeed similar. In particular, we show that the number of excitations identified in an atomistic model serves as the order parameter for the inactive–active phase transition for that model. In this way, we show that the mechanism by which excitations are correlated in an atomistic model – by dynamical facilitation – is the mechanism from which the active–inactive phase transition emerges. We study properties of the inactive phase and show that it is amorphous lacking long-range order. We also discuss the choice of dynamical order parameters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/18/1.4712026.html;jsessionid=2itla6aep0mpg.x-aip-live-02?itemId=/content/aip/journal/jcp/136/18/10.1063/1.4712026&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/18/10.1063/1.4712026
10.1063/1.4712026
SEARCH_EXPAND_ITEM