1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Enhanced charge transfer by phenyl groups at a rubrene/C60 interface
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/18/10.1063/1.4712616
1.
1. M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. L. Brabec, Adv. Mater. 18(6), 789794 (2006).
http://dx.doi.org/10.1002/adma.200501717
2.
2. J. L. Bredas, J. E. Norton, J. Cornil, and V. Coropceanu, Acc. Chem. Res. 42(11), 16911699 (2009).
http://dx.doi.org/10.1021/ar900099h
3.
3. C. W. Schlenker and M. E. Thompson, Topics in Current Chemistry (Springer, Berlin, 2011), pp. 138.
4.
4. M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 131(26), 92819286 (2009).
http://dx.doi.org/10.1021/ja9007722
5.
5. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82(15), 155305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155305
6.
6. D. Marx and J. Hutter, Ab Initio Molecular Dynamics (Cambridge University Press, Cambridge, England, 2009).
7.
7. N. L. Doltsinis and D. Marx, Phys. Rev. Lett. 88(16), 166402 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.166402
8.
8. C. F. Craig, W. R. Duncan, and O. V. Prezhdo, Phys. Rev. Lett. 95(16), 163001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.163001
9.
9. E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98(2), 023001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.023001
10.
10. H. Hirai and O. Sugino, Phys. Chem. Chem. Phys. 11(22), 45704578 (2009).
http://dx.doi.org/10.1039/b901144g
11.
11. S. Ohmura, S. Koga, I. Akai, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Appl. Phys. Lett. 98(11), 113302 (2011).
http://dx.doi.org/10.1063/1.3565962
12.
12. X. Zhang, Z. Li, and G. Lu, Phys. Rev. B 84 (23), 235208 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235208
13.
13. P. E. Blochl, Phys. Rev. B 50(24), 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
14.
14. G. Kresse and D. Joubert, Phys. Rev. B 59(3), 17581775 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
15.
15. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864B871 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
16.
16. W. Kohn and P. Vashishta, in Theory of the Inhomogeneous Electron Gas, edited by N. H. March and S. Lundqvist (Plenum, New York, 1983), pp. 79147.
17.
17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
18.
18. S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26(4), 17381742 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.1738
19.
19. G. Kresse and J. Hafner, Phys. Rev. B 49(20), 1425114269 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
20.
20. F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. Commun. 140(3), 303314 (2001).
http://dx.doi.org/10.1016/S0010-4655(01)00247-8
21.
21. S. Nose, Mol. Phys. 52(2), 255268 (1984).
http://dx.doi.org/10.1080/00268978400101201
22.
22. W. G. Hoover, Phys. Rev. A 31(3), 16951697 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
23.
23. M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97(3), 19902001 (1992).
http://dx.doi.org/10.1063/1.463137
24.
24. F. Shimojo, S. Ohmura, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. Lett. 104(12), 126102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126102
25.
25. M. E. Casida, in Recent Advances in Density Functional Methods (Part I), edited by D. P. Chong (World Scientific, Singapore, 1995), pp. 155192.
26.
26. M. Walter, H. Hakkinen, L. Lehtovaara, M. Puska, J. Enkovaara, C. Rostgaard, and J. J. Mortensen, J. Chem. Phys. 128(24), 244101 (2008).
http://dx.doi.org/10.1063/1.2943138
27.
27. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118(18), 82078215 (2003).
http://dx.doi.org/10.1063/1.1564060
28.
28. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120(18), 84258433 (2004).
http://dx.doi.org/10.1063/1.1688752
29.
29. L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 103(18), 186802 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.186802
30.
30. A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119(6), 29432946 (2003).
http://dx.doi.org/10.1063/1.1590951
31.
31. G. J. Martyna and M. E. Tuckerman, J. Chem. Phys. 110(6), 28102821 (1999).
http://dx.doi.org/10.1063/1.477923
32.
32. X. Zhang, Z. Li, and G. Lu, J. Phys.: Condens. Matter 24(20), 205801 (2012).
http://dx.doi.org/10.1088/0953-8984/24/20/205801
33.
33. J. C. Tully, J. Chem. Phys. 93(2), 10611071 (1990).
http://dx.doi.org/10.1063/1.459170
34.
34. E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 28502853 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2850
35.
35. I. Vasiliev, S. Ogut, and J. R. Chelikowsky, Phys. Rev. Lett. 82(9), 19191922 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1919
36.
36. C. Y. Yam, S. Yokojima, and G. H. Chen, Phys. Rev. B 68(15), 153105 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.153105
37.
37. S. Meng and E. Kaxiras, J. Chem. Phys. 129(5), 054110 (2008).
http://dx.doi.org/10.1063/1.2960628
38.
38. V. Soto-Verdugo, H. Metiu, and E. Gwinn, J. Chem. Phys. 132(19), 195102 (2010).
http://dx.doi.org/10.1063/1.3419930
39.
39. Y. J. Guo, N. Karasawa, and W. A. Goddard, Nature (London) 351(6326), 464467 (1991).
http://dx.doi.org/10.1038/351464a0
40.
40. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4(3), 435447 (2008).
http://dx.doi.org/10.1021/ct700301q
41.
41. J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25(9), 11571174 (2004).
http://dx.doi.org/10.1002/jcc.20035
42.
42. L. Muccioli, G. D’Avino, and C. Zannoni, Adv. Mater. 23(39), 45324536 (2011).
http://dx.doi.org/10.1002/adma.201101652
43.
43. E. L. Shirley and S. G. Louie, Phy. Rev. Lett. 71(1), 133136 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.133
44.
44. C. W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 86(24), 243506 (2005).
http://dx.doi.org/10.1063/1.1946184
45.
45. A. K. Pandey and J. M. Nunzi, Adv. Mater. 19(21), 36133617 (2007).
http://dx.doi.org/10.1002/adma.200701052
46.
46. T. Petrenko, O. Krylova, F. Neese, and M. Sokolowski, New J. Phys. 11, 015001 (2009).
http://dx.doi.org/10.1088/1367-2630/11/1/015001
47.
47. D. Perez, B. P. Uberuaga, Y. Shim, J. G. Amar, and A. F. Voter, Annu. Rep. Comp. Chem. 5, 7998 (2009).
http://dx.doi.org/10.1016/S1574-1400(09)00504-0
48.
48. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93(8), 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
49.
49. L. W. Wang, Energy Environ. Sci. 2(9), 944955 (2009).
http://dx.doi.org/10.1039/b904805g
50.
50. Y. Fu, Y. H. Zhou, H. B. Su, F. Y. C. Boey, and H. Agren, J. Phys. Chem. C 114(9), 37433747 (2010).
http://dx.doi.org/10.1021/jp9082486
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/18/10.1063/1.4712616
Loading
/content/aip/journal/jcp/136/18/10.1063/1.4712616
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/18/10.1063/1.4712616
2012-05-11
2014-10-23

Abstract

Excitondynamics at an interface between an electron donor, rubrene, and a C60 acceptor is studied by nonadiabatic quantum molecular dynamics simulation. Simulation results reveal an essential role of the phenyl groups in rubrene in increasing the charge-transfer rate by an order-of-magnitude. The atomistic mechanism of the enhanced charge transfer is found to be the amplification of aromatic breathing modes by the phenyl groups, which causes large fluctuations of electronic excitation energies. These findings provide insight into molecular structure design for efficient solar cells, while explaining recent experimental observations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/18/1.4712616.html;jsessionid=4ralc5esqgpt6.x-aip-live-03?itemId=/content/aip/journal/jcp/136/18/10.1063/1.4712616&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced charge transfer by phenyl groups at a rubrene/C60 interface
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/18/10.1063/1.4712616
10.1063/1.4712616
SEARCH_EXPAND_ITEM