1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhanced charge transfer by phenyl groups at a rubrene/C60 interface
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/18/10.1063/1.4712616
1.
1. M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. L. Brabec, Adv. Mater. 18(6), 789794 (2006).
http://dx.doi.org/10.1002/adma.200501717
2.
2. J. L. Bredas, J. E. Norton, J. Cornil, and V. Coropceanu, Acc. Chem. Res. 42(11), 16911699 (2009).
http://dx.doi.org/10.1021/ar900099h
3.
3. C. W. Schlenker and M. E. Thompson, Topics in Current Chemistry (Springer, Berlin, 2011), pp. 138.
4.
4. M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 131(26), 92819286 (2009).
http://dx.doi.org/10.1021/ja9007722
5.
5. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82(15), 155305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155305
6.
6. D. Marx and J. Hutter, Ab Initio Molecular Dynamics (Cambridge University Press, Cambridge, England, 2009).
7.
7. N. L. Doltsinis and D. Marx, Phys. Rev. Lett. 88(16), 166402 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.166402
8.
8. C. F. Craig, W. R. Duncan, and O. V. Prezhdo, Phys. Rev. Lett. 95(16), 163001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.163001
9.
9. E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98(2), 023001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.023001
10.
10. H. Hirai and O. Sugino, Phys. Chem. Chem. Phys. 11(22), 45704578 (2009).
http://dx.doi.org/10.1039/b901144g
11.
11. S. Ohmura, S. Koga, I. Akai, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Appl. Phys. Lett. 98(11), 113302 (2011).
http://dx.doi.org/10.1063/1.3565962
12.
12. X. Zhang, Z. Li, and G. Lu, Phys. Rev. B 84 (23), 235208 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235208
13.
13. P. E. Blochl, Phys. Rev. B 50(24), 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
14.
14. G. Kresse and D. Joubert, Phys. Rev. B 59(3), 17581775 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
15.
15. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864B871 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
16.
16. W. Kohn and P. Vashishta, in Theory of the Inhomogeneous Electron Gas, edited by N. H. March and S. Lundqvist (Plenum, New York, 1983), pp. 79147.
17.
17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
18.
18. S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26(4), 17381742 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.1738
19.
19. G. Kresse and J. Hafner, Phys. Rev. B 49(20), 1425114269 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
20.
20. F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. Commun. 140(3), 303314 (2001).
http://dx.doi.org/10.1016/S0010-4655(01)00247-8
21.
21. S. Nose, Mol. Phys. 52(2), 255268 (1984).
http://dx.doi.org/10.1080/00268978400101201
22.
22. W. G. Hoover, Phys. Rev. A 31(3), 16951697 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
23.
23. M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97(3), 19902001 (1992).
http://dx.doi.org/10.1063/1.463137
24.
24. F. Shimojo, S. Ohmura, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. Lett. 104(12), 126102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126102
25.
25. M. E. Casida, in Recent Advances in Density Functional Methods (Part I), edited by D. P. Chong (World Scientific, Singapore, 1995), pp. 155192.
26.
26. M. Walter, H. Hakkinen, L. Lehtovaara, M. Puska, J. Enkovaara, C. Rostgaard, and J. J. Mortensen, J. Chem. Phys. 128(24), 244101 (2008).
http://dx.doi.org/10.1063/1.2943138
27.
27. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118(18), 82078215 (2003).
http://dx.doi.org/10.1063/1.1564060
28.
28. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120(18), 84258433 (2004).
http://dx.doi.org/10.1063/1.1688752
29.
29. L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 103(18), 186802 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.186802
30.
30. A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119(6), 29432946 (2003).
http://dx.doi.org/10.1063/1.1590951
31.
31. G. J. Martyna and M. E. Tuckerman, J. Chem. Phys. 110(6), 28102821 (1999).
http://dx.doi.org/10.1063/1.477923
32.
32. X. Zhang, Z. Li, and G. Lu, J. Phys.: Condens. Matter 24(20), 205801 (2012).
http://dx.doi.org/10.1088/0953-8984/24/20/205801
33.
33. J. C. Tully, J. Chem. Phys. 93(2), 10611071 (1990).
http://dx.doi.org/10.1063/1.459170
34.
34. E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 28502853 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2850
35.
35. I. Vasiliev, S. Ogut, and J. R. Chelikowsky, Phys. Rev. Lett. 82(9), 19191922 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1919
36.
36. C. Y. Yam, S. Yokojima, and G. H. Chen, Phys. Rev. B 68(15), 153105 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.153105
37.
37. S. Meng and E. Kaxiras, J. Chem. Phys. 129(5), 054110 (2008).
http://dx.doi.org/10.1063/1.2960628
38.
38. V. Soto-Verdugo, H. Metiu, and E. Gwinn, J. Chem. Phys. 132(19), 195102 (2010).
http://dx.doi.org/10.1063/1.3419930
39.
39. Y. J. Guo, N. Karasawa, and W. A. Goddard, Nature (London) 351(6326), 464467 (1991).
http://dx.doi.org/10.1038/351464a0
40.
40. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4(3), 435447 (2008).
http://dx.doi.org/10.1021/ct700301q
41.
41. J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25(9), 11571174 (2004).
http://dx.doi.org/10.1002/jcc.20035
42.
42. L. Muccioli, G. D’Avino, and C. Zannoni, Adv. Mater. 23(39), 45324536 (2011).
http://dx.doi.org/10.1002/adma.201101652
43.
43. E. L. Shirley and S. G. Louie, Phy. Rev. Lett. 71(1), 133136 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.133
44.
44. C. W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 86(24), 243506 (2005).
http://dx.doi.org/10.1063/1.1946184
45.
45. A. K. Pandey and J. M. Nunzi, Adv. Mater. 19(21), 36133617 (2007).
http://dx.doi.org/10.1002/adma.200701052
46.
46. T. Petrenko, O. Krylova, F. Neese, and M. Sokolowski, New J. Phys. 11, 015001 (2009).
http://dx.doi.org/10.1088/1367-2630/11/1/015001
47.
47. D. Perez, B. P. Uberuaga, Y. Shim, J. G. Amar, and A. F. Voter, Annu. Rep. Comp. Chem. 5, 7998 (2009).
http://dx.doi.org/10.1016/S1574-1400(09)00504-0
48.
48. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93(8), 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
49.
49. L. W. Wang, Energy Environ. Sci. 2(9), 944955 (2009).
http://dx.doi.org/10.1039/b904805g
50.
50. Y. Fu, Y. H. Zhou, H. B. Su, F. Y. C. Boey, and H. Agren, J. Phys. Chem. C 114(9), 37433747 (2010).
http://dx.doi.org/10.1021/jp9082486
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/18/10.1063/1.4712616
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Top (a) and side (b) views of a tetracene molecule on C60 (111) surface, and top (c) and side (d) views of a rubrene molecule on C60 (111) surface, where the cyan and yellow spheres represent C and H atoms, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

Charge-transfer excitation energy as a function of the Rub–C60 distance. The diamond and square symbols indicate the excitation energies with and without long-range exchange correction (LC), respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Top (a) and side (b) views of a zoomed-in snapshot of MD simulation of rubrene molecules (colored lines) on C60 (grey lines) (111) surface, where the color is used to distinguish different molecules. (c) A similar snapshot (top view) for tetracene molecules deposited on C60 (111) surface. (d) The definition of backbone tilt angles α and β, which are the angles between the xy plane (i.e., the (111) plane of C60) and two vectors that span the backbone plane, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Spatial distribution of key electronic wave functions in the ground state, where the red and blue isosurfaces correspond to the values of 0.015 and –0.015 a.u., respectively. (b) and (c) show the time evolution of electronic eigenenergies during QMD simulation for the tetracene/C60 and rubrene/C60 systems, respectively.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Time evolution of the LUMO(Rub) and LUMO(Tc) levels (black solid lines) in QMD simulation is decomposed into low-frequency (solid red and blue lines) and high-frequency (dashed red and blue lines) components, respectively. (b) Time evolution of the average circumference of the backbone aromatic rings, where solid and dashed lines are for the middle and end two rings, respectively. The vertical dashed lines mark peaks and valleys labeled A-F.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Schematic of the four aromatic rings A, B, C, and D with the corresponding color code. (b) Time evolution of the circumference C(t) for the four aromatics rings of one of the tetracene molecules in MD simulation. (c) The same as (b) but for rubrene.

Image of FIG. 7.

Click to view

FIG. 7.

The vibrational spectrum corresponding to Figs. 6(b) and 6(c), where the blue and red lines are averaged over the two outer and two middle rings, respectively. (a) and (b) are for tetracene, while (c) and (d) are for rubrene. (b) and (d) are close-ups of the low-frequency regions enclosed by the black dashed lines in (a) and (c), respectively.

Image of FIG. 8.

Click to view

FIG. 8.

NAQMD simulation of rubrene/C60. (a) Spatial distribution of exciton charge density at different time steps A-F, where isosurfaces of the quasi-electron and quasi-hole charge densities of 0.015 a.u. are shown in orange and green, respectively. (b) Time evolution of electronic excitation energies. The system is in the excited state indicated by red circles, and the times corresponding to snapshots A-F are indicated by arrows.

Image of FIG. 9.

Click to view

FIG. 9.

Time evolution of electronic excitation energies in NAQMD simulation of tetracene/C60. The occupied excited state is indicated by red solid circles. A nonadiabatic transition occurs at about 130 fs.

Loading

Article metrics loading...

/content/aip/journal/jcp/136/18/10.1063/1.4712616
2012-05-11
2014-04-23

Abstract

Excitondynamics at an interface between an electron donor, rubrene, and a C60 acceptor is studied by nonadiabatic quantum molecular dynamics simulation. Simulation results reveal an essential role of the phenyl groups in rubrene in increasing the charge-transfer rate by an order-of-magnitude. The atomistic mechanism of the enhanced charge transfer is found to be the amplification of aromatic breathing modes by the phenyl groups, which causes large fluctuations of electronic excitation energies. These findings provide insight into molecular structure design for efficient solar cells, while explaining recent experimental observations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/18/1.4712616.html;jsessionid=5r79ed6cj00r5.x-aip-live-06?itemId=/content/aip/journal/jcp/136/18/10.1063/1.4712616&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced charge transfer by phenyl groups at a rubrene/C60 interface
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/18/10.1063/1.4712616
10.1063/1.4712616
SEARCH_EXPAND_ITEM