1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
A new multiscale modeling method for simulating the loss processes in polymer solar cell nanodevices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/19/10.1063/1.4712622
1.
1. M. Sommer, S. M. Lindner, and M. Thelakkat, Adv. Funct. Mater. 17, 1493 (2007).
http://dx.doi.org/10.1002/adfm.200600634
2.
2. C. J. Brabec, J. A. Hauch, P. Schilinsky, and C. Waldauf, MRS Bull. 30, 50 (2005).
http://dx.doi.org/10.1557/mrs2005.10
3.
3. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
4.
4. P. K. Watkins, A. B. Walker, and G. L. B. Verschoor, Nano Lett. 5, 1814 (2005).
http://dx.doi.org/10.1021/nl051098o
5.
5. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Mater. Today 10, 28 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70276-6
6.
6. M. Hilczer and M. Tachiya, J. Phys. Chem. C 114, 6808 (2010).
http://dx.doi.org/10.1021/jp912262h
7.
7. C.-W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 86, 243506 (2005).
http://dx.doi.org/10.1063/1.1946184
8.
8. P. Peumans, S. Uchida, and S. R. Forrest, Nature (London) 425, 158 (2003).
http://dx.doi.org/10.1038/nature01949
9.
9. S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 84, 4218 (2004).
http://dx.doi.org/10.1063/1.1755833
10.
10. M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, Nature (London) 395, 257 (1998).
http://dx.doi.org/10.1038/26183
11.
11. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature (London) 376, 498 (1995).
http://dx.doi.org/10.1038/376498a0
12.
12. T. Kietzke, H.-H. Hörhold, and D. Neher, Chem. Mater. 17, 6532 (2005).
http://dx.doi.org/10.1021/cm050148n
13.
13. A. J. Breeze, A. Salomon, D. S. Ginley, B. A. Gregg, H. Tillmann, and H.-H. Hörhold, Appl. Phys. Lett. 81, 3085 (2002).
http://dx.doi.org/10.1063/1.1515362
14.
14. G. Yu, J. Gao, and J. C. Hummelen, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
15.
15. J.-I. Nakamura, C. Yokoe, K. Murata, and K. Takahashi, J. Appl. Phys. 96, 6878 (2004).
http://dx.doi.org/10.1063/1.1804245
16.
16. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
17.
17. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
18.
18. S. M. Lindner, S. Hüttner, A. Chiche, M. Thelakkat, and G. Krausch, Angew. Chem. Int. Ed. 45, 3364 (2006).
http://dx.doi.org/10.1002/anie.200503958
19.
19. Y. Sun, S.-C. Chien, H.-L. Yip, K.-S. Chen, Y. Zhang, J. A. Davies, F.-C. Chen, B. Lin, and A. K.-Y. Jen, J. Mater. Chem. 22, 5587 (2012).
http://dx.doi.org/10.1039/c2jm15517f
20.
20. S.-S. Sun, C. Zhang, A. Ledbetter, S. Choi, K. Seo, and J. Haliburton, Appl. Phys. Lett. 90, 043117 (2007).
http://dx.doi.org/10.1063/1.2437100
21.
21. S. Sun, Z. Fan, Y. Wang, and J. Haliburton, J. Mater. Sci. 40, 1429 (2005).
http://dx.doi.org/10.1007/s10853-005-0579-x
22.
22. S.-S. Sun, Z. Fan, Y. Wang, K. Winston, and C. E. Bonner, Mater. Sci. Eng. B 116, 279 (2005).
http://dx.doi.org/10.1016/j.mseb.2004.05.055
23.
23. M. D. McGehee and M. A. Topinka, Nature Mater. 5, 675 (2006).
http://dx.doi.org/10.1038/nmat1723
24.
24. H. Hoppe and N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).
http://dx.doi.org/10.1039/b510618b
25.
25. K. Sivula, Z. T. Ball, N. Watanabe, and J. M. J. Frechet, Adv. Mater. 18, 206 (2006).
http://dx.doi.org/10.1002/adma.200501787
26.
26. M. Drees, H. Hoppe, C. Winder, H. Neugebauer, N. S. Sariciftci, W. Schwinger, F. Schäffler, C. Topf, M. C. Scharber, Z. Zhu, and R. Gaudiana, J. Mater. Chem. 15, 5158 (2005).
http://dx.doi.org/10.1039/b505361g
27.
27. G. A. Buxton and N. Clarke, Phys. Rev. B 74, 085207 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.085207
28.
28. U. Scherf, A. Gutacker, and N. Koenen, Acc. Chem. Res. 41, 1086 (2008).
http://dx.doi.org/10.1021/ar7002539
29.
29. R. A. Segalman, B. McCulloch, S. Kirmayer, and J. J. Urban, Macromolecules 42, 9205 (2009).
http://dx.doi.org/10.1021/ma901350w
30.
30. S. B. Darling, Energy Environ. Sci. 2, 1266 (2009).
http://dx.doi.org/10.1039/b912086f
31.
31. M. Sommer, S. Huettner, and M. Thelakkat, J. Mater. Chem. 20, 10788 (2010).
http://dx.doi.org/10.1039/c0jm00665c
32.
32. I. Botiz and S. B. Darling, Mater. Today 13, 42 (2010).
http://dx.doi.org/10.1016/S1369-7021(10)70083-3
33.
33. P. D. Topham, A. J. Parnell, and R. C. Hiorns, J. Polym. Sci. Part B: Polym. Phys. 49, 1131 (2011).
http://dx.doi.org/10.1002/polb.22302
34.
34. S. M. Lindner and M. Thelakkat, Macromolecules 37, 8832 (2004).
http://dx.doi.org/10.1021/ma0481656
35.
35. G. Tu, H. Li, M. Forster, R. Heiderhoff, L. J. Balk, and U. Scherf, Macromolecules 39, 4327 (2006).
http://dx.doi.org/10.1021/ma060341i
36.
36. M. H. van der Veen, B. de Boer, U. Stalmach, K. I. van de Wetering, and G. Hadziioannou, Macromolecules 37, 3673 (2004).
http://dx.doi.org/10.1021/ma035643o
37.
37. D. C. Coffey and D. S. Ginger, Nature Mater. 5, 735 (2006).
http://dx.doi.org/10.1038/nmat1712
38.
38. D. Coffey and D. Ginger, SPIE Newsroom, 27 February 2007.
39.
39. H. J. Snaith, A. C. Arias, A. C. Morteani, C. Silva, and R. H. Friend, Nano Lett. 2, 1353 (2002).
http://dx.doi.org/10.1021/nl0257418
40.
40. C. R. McNeill, B. Watts, L. Thomsen, W. J. Belcher, N. C. Greenham, and P. C. Dastoor, Nano Lett. 6, 1202 (2006).
http://dx.doi.org/10.1021/nl060583w
41.
41. D. Wang, M. Reese, N. Kopidakis, and B. A. Gregg, NREL/CP-270-42565, May 2008.
42.
42. G. A. Buxton and N. Clarke, Model. Simul. Mater. Sci. Eng. 15, 13 (2007).
http://dx.doi.org/10.1088/0965-0393/15/2/002
43.
43. B. A. Gregg and M. C. Hanna, J. Appl. Phys. 93, 3605 (2003).
http://dx.doi.org/10.1063/1.1544413
44.
44. J. A. Barker, C. M. Ramsdale, and N. C. Greenham, Phys. Rev. B 67, 075205 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.075205
45.
45. J. O. Haerter, S. V. Chasteen, S. A. Carter, and J. C. Scott, Appl. Phys. Lett. 86, 164101 (2005).
http://dx.doi.org/10.1063/1.1901812
46.
46. R. A. Marsh, C. Groves, and N. C. Greenham, J. Appl. Phys. 101, 083509 (2007).
http://dx.doi.org/10.1063/1.2718865
47.
47. R. K. Cavin, V. V. Zhirnov, G. I. Bourianoff, J. A. Hutchby, D. J. C. Herr, H. H. Hosack, W. H. Joyner, and T. A. Wooldridge, J. Nanopart. Res. 7, 573 (2005).
http://dx.doi.org/10.1007/s11051-005-7528-0
48.
48. S. A. Baeurle, G. H. Fredrickson, and A. A. Gusev, Macromolecules 37, 5784 (2004).
http://dx.doi.org/10.1021/ma035528d
49.
49. L. Delle Site, C. F. Abrams, A. Alavi, and K. Kremer, Phys. Rev. Lett 89, 156103 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.156103
50.
50. L. Delle Site, S. Leon, and K. Kremer, J. Am. Chem. Soc. 126, 2944 (2004).
http://dx.doi.org/10.1021/ja0387406
51.
51. J. Kirkpatrick, V. Marcon, J. Nelson, K. Kremer, and D. Andrienko, Phys. Rev. Lett. 98, 227402 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.227402
52.
52. S. C. Glotzer and W. Paul, Annu. Rev. Mater. Res. 32, 401 (2002).
http://dx.doi.org/10.1146/annurev.matsci.32.010802.112213
53.
53. H. Tang and K. F. Freed, J. Chem. Phys. 94, 6307 (1991).
http://dx.doi.org/10.1063/1.460419
54.
54. M. Doi, Macromol. Symposia 195, 101 (2003).
http://dx.doi.org/10.1002/masy.200390110
55.
55. F. Schmid, “Theory and simulation of multiphase polymer systems,” in Handbook of Multiphase Polymer Systems, edited by A. Boudenne, L. Ibos, Y. Candau, and S. Thomas (Wiley, Chichester, 2011), Chap. 3.
56.
56. T. Kawakatsu, OCTA Integrated Simulation System for Soft Materials, User's Manual, Version 8.0, 2009, Chap. 7, p. 134.
57.
57.See http://octa.jp/ for information about OCTA-program.
58.
58. D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104637
59.
59. L. Meng, Y. Shang, Q. Li, Y. Li, X. Zhan, Z. Shuai, R. G. E. Kimber, and A. B. Walker, J. Phys. Chem. B 114, 36 (2010).
http://dx.doi.org/10.1021/jp907167u
60.
60. X. Zhan, Z. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, and S. R. J. Marder, J. Am. Chem. Soc. 129, 7246 (2007).
http://dx.doi.org/10.1021/ja071760d
61.
61. R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.599
62.
62. K. Seki and M. Tachiya, Phys. Rev. B 65, 014305 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.014305
63.
63. R. G. E. Kimber, A. B. Walker, G. E. Schröder-Turk, and D. J. Cleaver, Phys. Chem. Chem. Phys. 12, 844 (2010).
http://dx.doi.org/10.1039/b916340a
64.
64. T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, and T. P. Russell, Science 273, 931 (1996).
http://dx.doi.org/10.1126/science.273.5277.931
65.
65. C. R. McNeill, S. Westenhoff, C. Groves, R. H. Friend, and N. C. Greenham, J. Phys. Chem. C 111, 19153 (2007).
http://dx.doi.org/10.1021/jp075904m
66.
66. D. Pospiech, “Influencing the interface in polymer blends by compatibilization with block copolymers,” in Polymer Surfaces and Interfaces, edited by M. Stamm (Springer, Berlin, 2008), pp. 275298.
67.
67. R. Mukherjee, A. Sharma, and U. Steiner, “Surface instability and pattern formation in thin polymer films,” in Generating Micro- and Nanopatterns on Polymeric Materials, edited by A. del Campo and A. Arzt (Wiley-VCH, Weinheim, 2011), p. 246.
68.
68. J. Peet, M. L. Senatore, A. J. Heeger, and G. C. Bazan, Adv. Mater. 21, 1521 (2009).
http://dx.doi.org/10.1002/adma.200802559
69.
69. S. A. Baeurle, J. Math. Chem. 46, 363 (2009).
http://dx.doi.org/10.1007/s10910-008-9467-3
70.
70. S. A. Baeurle, T. Usami, and A. A. Gusev, Polymer 47, 8604 (2006).
http://dx.doi.org/10.1016/j.polymer.2006.10.017
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/19/10.1063/1.4712622
Loading
/content/aip/journal/jcp/136/19/10.1063/1.4712622
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/19/10.1063/1.4712622
2012-05-15
2014-11-24

Abstract

The photoelectric power conversion efficiency of polymersolar cells is till now, compared to conventional inorganic solar cells, still relatively low with maximum values ranging from 7% to 8%. This essentially relates to the existence of exciton and charge carrier loss phenomena, reducing the performance of polymersolar cells significantly. In this paper we introduce a new computer simulation technique, which permits to explore the causes of the occurrence of such phenomena at the nanoscale and to design new photovoltaic materials with optimized opto-electronic properties. Our approach consists in coupling a mesoscopic field-theoretic method with a suitable dynamic Monte Carlo algorithm, to model the elementary photovoltaic processes. Using this algorithm, we investigate the influence of structural characteristics and different device conditions on the excitongeneration and charge transport efficiencies in case of a novel nanostructured polymer blend. More specifically, we find that the disjunction of continuous percolation paths leads to the creation of dead ends, resulting in charge carrier losses through charge recombination. Moreover, we observe that defects are characterized by a low exciton dissociation efficiency due to a high charge accumulation, counteracting the chargegeneration process. From these observations, we conclude that both the charge carrier loss and the exciton loss phenomena lead to a dramatic decrease in the internal quantum efficiency. Finally, by analyzing the photovoltaic behavior of the nanostructures under different circuit conditions, we demonstrate that charge injection significantly determines the impact of the defects on the solar cell performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/19/1.4712622.html;jsessionid=7s6i9xf4sc3j.x-aip-live-02?itemId=/content/aip/journal/jcp/136/19/10.1063/1.4712622&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A new multiscale modeling method for simulating the loss processes in polymer solar cell nanodevices
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/19/10.1063/1.4712622
10.1063/1.4712622
SEARCH_EXPAND_ITEM