1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Comment on “Revised electron affinity of SF6 from kinetic data” [J. Chem. Phys.136, 121102 (2012)]
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/19/10.1063/1.4719180
1.
1. N. R. Brinkmann and H. F. Schaefer III, Chem. Phys. Lett. 381, 123 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.08.128
2.
2. E. C.M. Chen, J. R. Wiley, C. F. Batten, and W. E. Wentworth, J. Phys. Chem. 98, 88 (1994).
http://dx.doi.org/10.1021/j100052a016
3.
3. W. Eisfeld, J. Chem. Phys. 134, 054303 (2011);
http://dx.doi.org/10.1063/1.3544213
3.W. Eisfeld, J. Chem. Phys. 134, 129903 (2011) (Erratum).
http://dx.doi.org/10.1063/1.3575400
4.
4. J. Troe, T. M. Miller, and A. A. Viggiano, J. Chem. Phys. 136, 121102 (2012).
http://dx.doi.org/10.1063/1.3698170
5.
5. A. A. Viggiano, T. M. Miller, J. F. Friedman, and J. Troe, J. Chem. Phys. 127, 244305 (2007).
http://dx.doi.org/10.1063/1.2804764
6.
6. C. W. Bauschlicher and A. Ricca, J. Phys. Chem. A 102, 4722 (1998).
http://dx.doi.org/10.1021/jp981084p
7.
7. G. L. Gutsev and R. J. Bartlett, Mol. Phys. 94, 121 (1998).
http://dx.doi.org/10.1080/002689798168402
8.
8. L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998).
http://dx.doi.org/10.1063/1.477422
9.
9. T. M. Miller, S. T. Arnold, and A. A. Viggiano, Int. J. Mass. Spectrom. 227, 413 (2003).
http://dx.doi.org/10.1016/S1387-3806(03)00079-4
10.
10. J. K. Kang and C. B. Musgrave, J. Phys. Chem. 115, 11040 (2001).
http://dx.doi.org/10.1063/1.1415079
11.
11. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
12.
12. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988);
http://dx.doi.org/10.1103/PhysRevB.37.785
12.B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
http://dx.doi.org/10.1016/0009-2614(89)87234-3
13.
13. J. P. Perdew, Phys. Rev. B 33, 8822 (1986);
http://dx.doi.org/10.1103/PhysRevB.33.8822
13.J. P. Perdew, Phys. Rev. B 34, 7406 (1986) (Erratum).
http://dx.doi.org/10.1103/PhysRevB.34.7406
14.
14. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
15.
15. A. D. Becke, Phys. Rev. A 38 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
16.
16. J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999);
http://dx.doi.org/10.1063/1.479454
16.S. Parthiban and J. M. L. Martin, J. Chem. Phys. 114, 6014 (2001).
http://dx.doi.org/10.1063/1.1356014
17.
17. A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, J. Chem. Phys. 125, 144108 (2006).
http://dx.doi.org/10.1063/1.2348881
18.
18. A. Karton, S. Daon, and J. M. L. Martin, Chem. Phys. Lett. 510, 165 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.05.007
19.
19. A. Karton and J. M. L. Martin, Theor. Chem. Acc. 115, 330 (2006).
http://dx.doi.org/10.1007/s00214-005-0028-6
20.
20. F. Jensen, Theor. Chem. Acc. 113, 267 (2005).
http://dx.doi.org/10.1007/s00214-005-0635-2
21.
21. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
22.
22. T. H. Dunning, K. A. Peterson, and A. K. Wilson, J. Chem. Phys. 114, 9244 (2001).
http://dx.doi.org/10.1063/1.1367373
23.
23. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
24.
24. K. A. Peterson and T. H. Dunning, J. Chem. Phys. 117, 10548 (2002).
http://dx.doi.org/10.1063/1.1520138
25.
25. M. Douglas and N. M. Kroll, Ann. Phys. 82, 89 (1974);
http://dx.doi.org/10.1016/0003-4916(74)90333-9
25.B. A. Heß, Phys. Rev. A 33, 3742 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.3742
26.
26. W. A. de Jong, R. J. Harrison, and D. A. Dixon, J. Chem. Phys. 114, 48 (2001).
http://dx.doi.org/10.1063/1.1329891
27.
27. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, et al., MOLPRO, version 2010.1, a package of ab initio programs, see http://www.molpro.net.
28.
28. MRCC, a string-based general coupled cluster program suite written by M. Kállay; see also M. Kállay and P. R. Surján, J. Chem. Phys. 115, 2945 (2001), see http://www.mrcc.hu.
http://dx.doi.org/10.1063/1.1383290
29.
29. CFOUR, a quantum chemical program package written by J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, D. P. O'Neill, D. R. Price, E. Prochnow, K. Ruud, F. Schiffmann, S. Stopkowicz, M. E. Varner, J. Vázquez, F. Wang, J. D. Watts, and the integral packages MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de.
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4719180 for Table 1, Software used, Acknowledgements, the RHF-UCCSD(T)/AV(Q+d)Z optimized geometries of SF6 and (in Oh symmetry), and, for the sake of completeness, the RHF-UCCSD(T)/AV(Q+d)Z optimized geometry (in C4v symmetry), which differs very slightly from the ROCCSD(T)/AV(Q+d)Z geometry actually used, see text. [Supplementary Material]
31.
31. J. M. García de la Vega, Phys. Rev. A 51, 2616 (1995);
http://dx.doi.org/10.1103/PhysRevA.51.2616
31.T. Koga, H. Aoki, J. M. García de la Vega, and H. Tatewaki, Theor. Chem. Acc. 96, 248 (1997).
http://dx.doi.org/10.1007/s002140050227
32.
32. G. de Oliveira, J. M. L. Martin, F. De Proft, and P. Geerlings, Phys. Rev. A 60, 1034 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.1034
33.
33. J. Gauss, A. Tajti, M. Kállay, J. F. Stanton, and P. G. Szalay, J. Chem. Phys. 125, 144111 (2006).
http://dx.doi.org/10.1063/1.2356465
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/19/10.1063/1.4719180
Loading
/content/aip/journal/jcp/136/19/10.1063/1.4719180
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/19/10.1063/1.4719180
2012-05-21
2014-11-21

Abstract

The adiabatic electron affinity (AEA) of SF6 has been calculated near the relativistic CCSDT(Q) basis set limit. Our best theoretical value (1.0340 ± 0.03 eV) is in excellent agreement with the recently revised experimental value of 1.03 ± 0.05 eV reported by Troe et al. [J. Chem. Phys.136, 121102 (2012)]10.1063/1.3698170. While our best nonrelativistic, clamped-nuclei, valence CCSD(T) basis set limit value of 0.9058 eV is in good accord with the previously reported CCSD(T)/CBS values, to obtain an accurate AEA, several additional contributions need to be taken into account. The most important one is scalar-relativistic effects (0.0839 eV), followed by inner-shell correlation (0.0216 eV) and post-CCSD(T) correlation effects (0.0248 eV), the latter almost entirely due to connected quadruple excitations. The diagonal Born-Oppenheimer correction is an order of magnitude less important at −0.0022 eV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/19/1.4719180.html;jsessionid=1h424kmqgaofw.x-aip-live-03?itemId=/content/aip/journal/jcp/136/19/10.1063/1.4719180&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Comment on “Revised electron affinity of SF6 from kinetic data” [J. Chem. Phys.136, 121102 (2012)]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/19/10.1063/1.4719180
10.1063/1.4719180
SEARCH_EXPAND_ITEM