Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. R. Brinkmann and H. F. Schaefer III, Chem. Phys. Lett. 381, 123 (2003).
2. E. C.M. Chen, J. R. Wiley, C. F. Batten, and W. E. Wentworth, J. Phys. Chem. 98, 88 (1994).
3. W. Eisfeld, J. Chem. Phys. 134, 054303 (2011);
3.W. Eisfeld, J. Chem. Phys. 134, 129903 (2011) (Erratum).
4. J. Troe, T. M. Miller, and A. A. Viggiano, J. Chem. Phys. 136, 121102 (2012).
5. A. A. Viggiano, T. M. Miller, J. F. Friedman, and J. Troe, J. Chem. Phys. 127, 244305 (2007).
6. C. W. Bauschlicher and A. Ricca, J. Phys. Chem. A 102, 4722 (1998).
7. G. L. Gutsev and R. J. Bartlett, Mol. Phys. 94, 121 (1998).
8. L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998).
9. T. M. Miller, S. T. Arnold, and A. A. Viggiano, Int. J. Mass. Spectrom. 227, 413 (2003).
10. J. K. Kang and C. B. Musgrave, J. Phys. Chem. 115, 11040 (2001).
11. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
12. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988);
12.B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
13. J. P. Perdew, Phys. Rev. B 33, 8822 (1986);
13.J. P. Perdew, Phys. Rev. B 34, 7406 (1986) (Erratum).
14. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
15. A. D. Becke, Phys. Rev. A 38 3098 (1988).
16. J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999);
16.S. Parthiban and J. M. L. Martin, J. Chem. Phys. 114, 6014 (2001).
17. A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, J. Chem. Phys. 125, 144108 (2006).
18. A. Karton, S. Daon, and J. M. L. Martin, Chem. Phys. Lett. 510, 165 (2011).
19. A. Karton and J. M. L. Martin, Theor. Chem. Acc. 115, 330 (2006).
20. F. Jensen, Theor. Chem. Acc. 113, 267 (2005).
21. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
22. T. H. Dunning, K. A. Peterson, and A. K. Wilson, J. Chem. Phys. 114, 9244 (2001).
23. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
24. K. A. Peterson and T. H. Dunning, J. Chem. Phys. 117, 10548 (2002).
25. M. Douglas and N. M. Kroll, Ann. Phys. 82, 89 (1974);
25.B. A. Heß, Phys. Rev. A 33, 3742 (1986).
26. W. A. de Jong, R. J. Harrison, and D. A. Dixon, J. Chem. Phys. 114, 48 (2001).
27. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, et al., MOLPRO, version 2010.1, a package of ab initio programs, see
28. MRCC, a string-based general coupled cluster program suite written by M. Kállay; see also M. Kállay and P. R. Surján, J. Chem. Phys. 115, 2945 (2001), see
29. CFOUR, a quantum chemical program package written by J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, D. P. O'Neill, D. R. Price, E. Prochnow, K. Ruud, F. Schiffmann, S. Stopkowicz, M. E. Varner, J. Vázquez, F. Wang, J. D. Watts, and the integral packages MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see
30.See supplementary material at for Table 1, Software used, Acknowledgements, the RHF-UCCSD(T)/AV(Q+d)Z optimized geometries of SF6 and (in Oh symmetry), and, for the sake of completeness, the RHF-UCCSD(T)/AV(Q+d)Z optimized geometry (in C4v symmetry), which differs very slightly from the ROCCSD(T)/AV(Q+d)Z geometry actually used, see text. [Supplementary Material]
31. J. M. García de la Vega, Phys. Rev. A 51, 2616 (1995);
31.T. Koga, H. Aoki, J. M. García de la Vega, and H. Tatewaki, Theor. Chem. Acc. 96, 248 (1997).
32. G. de Oliveira, J. M. L. Martin, F. De Proft, and P. Geerlings, Phys. Rev. A 60, 1034 (1999).
33. J. Gauss, A. Tajti, M. Kállay, J. F. Stanton, and P. G. Szalay, J. Chem. Phys. 125, 144111 (2006).

Data & Media loading...


Article metrics loading...



The adiabatic electron affinity (AEA) of SF6 has been calculated near the relativistic CCSDT(Q) basis set limit. Our best theoretical value (1.0340 ± 0.03 eV) is in excellent agreement with the recently revised experimental value of 1.03 ± 0.05 eV reported by Troe et al. [J. Chem. Phys.136, 121102 (2012)]10.1063/1.3698170. While our best nonrelativistic, clamped-nuclei, valence CCSD(T) basis set limit value of 0.9058 eV is in good accord with the previously reported CCSD(T)/CBS values, to obtain an accurate AEA, several additional contributions need to be taken into account. The most important one is scalar-relativistic effects (0.0839 eV), followed by inner-shell correlation (0.0216 eV) and post-CCSD(T) correlation effects (0.0248 eV), the latter almost entirely due to connected quadruple excitations. The diagonal Born-Oppenheimer correction is an order of magnitude less important at −0.0022 eV.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd