Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/136/2/10.1063/1.3675486
1.
1. A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, ACS Nano 3, 307 (2009).
http://dx.doi.org/10.1021/nn800551s
2.
2. S. Jain, V. S. Thakare, M. Das, A. K. Jain, and S. Patil, Nanomedicine 5, 1277 (2010).
http://dx.doi.org/10.2217/nnm.10.28
3.
3. R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. M. Li, W. Kim, P. J. Utz, and H. J. Dai, Proc. Natl. Acad. Sci. U.S.A. 100, 4984 (2003).
http://dx.doi.org/10.1073/pnas.0837064100
4.
4. W. F. DeGrado, G. Grigoryan, Y. H. Kim, R. Acharya, K. Axelrod, R. M. Jain, L. Willis, M. Drndic, and J. M. Kikkawa, Science 332, 1071 (2011).
http://dx.doi.org/10.1126/science.1198841
5.
5. D. Nepal and K. E. Geckeler, Small 2, 406 (2006).
http://dx.doi.org/10.1002/smll.200500351
6.
6. D. Nepal and K. E. Geckeler, Small 3, 1259 (2007).
http://dx.doi.org/10.1002/smll.200600511
7.
7. S. Q. Wang, E. S. Humphreys, S. Y. Chung, D. F. Delduco, S. R. Lustig, H. Wang, K. N. Parker, N. W. Rizzo, S. Subramoney, Y. M. Chiang, and A. Jagota, Nat. Mater. 2, 196 (2003).
http://dx.doi.org/10.1038/nmat833
8.
8. G. R. Dieckmann, A. B. Dalton, P. A. Johnson, J. Razal, J. Chen, G. M. Giordano, E. Munoz, I. H. Musselman, R. H. Baughman, and R. K. Draper, J. Am. Chem. Soc. 125, 1770 (2003).
http://dx.doi.org/10.1021/ja029084x
9.
9. V. E. Kagan, N. V. Konduru, W. H. Feng, B. L. Allen, J. Conroy, Y. Volkov, I. I. Vlasova, N. A. Belikova, N. Yanamala, A. Kapralov, Y. Y. Tyurina, J. W. Shi, E. R. Kisin, A. R. Murray, J. Franks, D. Stolz, P. P. Gou, J. Klein-Seetharaman, B. Fadeel, A. Star, and A. A. Shvedova, Nat. Nanotechnol. 5, 354 (2010).
http://dx.doi.org/10.1038/nnano.2010.44
10.
10. Y. L. Zhao, G. M. Xing, and Z. F. Chai, Nat. Nanotechnol. 3, 191 (2008).
http://dx.doi.org/10.1038/nnano.2008.77
11.
11. G. Zuo, W. Gu, H. Fang, and R. Zhou, J. Phys. Chem. C 115, 12322 (2011).
http://dx.doi.org/10.1021/jp2026303
12.
12. G. Zuo, Q. Huang, G. Wei, R. Zhou, and H. Fang, ACS Nano 4, 7508 (2010).
http://dx.doi.org/10.1021/nn101762b
13.
13. C. C. Ge, J. F. Du, L. N. Zhao, L. M. Wang, Y. Liu, D. H. Li, Y. L. Yang, R. H. Zhou, Y. L. Zhao, Z. F. Chai, and C. Y. Chen, Proc. Natl. Acad. Sci. U.S.A. 108, 16968 (2011).
http://dx.doi.org/10.1073/pnas.1105270108
14.
14. S. S. Karajanagi, A. A. Vertegel, R. S. Kane, and J. S. Dordick, Langmuir 20, 11594 (2004).
http://dx.doi.org/10.1021/la047994h
15.
15. P. Goldberg-Oppenheimer, and O. Regev, Small 3, 1894 (2007).
http://dx.doi.org/10.1002/smll.200700124
16.
16. J. Zhong, L. Song, J. Meng, B. Gao, W. Chu, H. Xu, Y. Luo, J. Guo, A. Marcelli, S. Xie, and Z. Wu, Carbon 47, 967 (2009).
http://dx.doi.org/10.1016/j.carbon.2008.11.051
17.
17. V. Zorbas, A. L. Smith, H. Xie, A. Ortiz-Acevedo, A. B. Dalton, G. R. Dieckmann, R. K. Draper, R. H. Baughman, and I. H. Musselman, J. Am. Chem. Soc. 127, 12323 (2005).
http://dx.doi.org/10.1021/ja050747v
18.
18. X. J. Li, W. Chen, Q. W. Zhan, L. M. Dai, L. Sowards, M. Pender, and R. R. Naik, J. Phys. Chem. B 110, 12621 (2006).
http://dx.doi.org/10.1021/jp061518d
19.
19. H. Xie, E. J. Becraft, R. H. Baughman, A. B. Dalton, and G. R. Dieckmann, J. Pept. Sci. 14, 139 (2008).
http://dx.doi.org/10.1002/psc.978
20.
20. Z. Su, K. Mui, E. Daub, T. Leung, and J. Honek, J. Phys. Chem. B 111, 14411 (2007).
http://dx.doi.org/10.1021/jp0740301
21.
21. C. G. Salzmann, M. A. H. Ward, R. M. J. Jacobs, G. Tobias, and M. L. H. Green, J. Phys. Chem. C 111, 18520 (2007).
http://dx.doi.org/10.1021/jp076013h
22.
22. T. Serizawa, Z. H. Gao, C. Y. Zhi, Y. Bando, and D. Golberg, J. Am. Chem. Soc. 132, 4976 (2010).
http://dx.doi.org/10.1021/ja910244b
23.
23. J.-W. Shen, T. Wu, Q. Wang, and Y. Kang, Biomaterials 29, 3847 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.06.013
24.
24. G. Gianese, V. Rosato, F. Cleri, M. Celino, and P. Morales, J. Phys. Chem. B 113, 12105 (2009).
http://dx.doi.org/10.1021/jp903652v
25.
25. S. O. Nielsen, C. C. Chiu, and G. R. Dieckmann, J. Phys. Chem. B 112, 16326 (2008).
http://dx.doi.org/10.1021/jp805313p
26.
26. M. S. P. Sansom, E. J. Wallace, R. S. G. D’Rozario, and B. M. Sanchez, Nanoscale 2, 967 (2010).
http://dx.doi.org/10.1039/b9nr00355j
27.
27. C.-c. Chiu, M. C. Maher, G. R. Dieckmann, and S. O. Nielsen, ACS Nano 4, 2539 (2010).
http://dx.doi.org/10.1021/nn901484w
28.
28. K. Balamurugan, R. Gopalakrishnan, S. S. Raman, and V. Subramanian, J. Phys. Chem. B 114, 14048 (2010).
http://dx.doi.org/10.1021/jp106177n
29.
29. R. R. Johnson, B. J. Rego, A. T. C. Johnson, and M. L. Klein, J. Phys. Chem. B 113, 11589 (2009).
http://dx.doi.org/10.1021/jp901999a
30.
30. Y. A. Cheng, D. C. Li, B. H. Ji, X. H. Shi, and H. J. Gao, J. Mol. Graphics Modell. 29, 171 (2010).
http://dx.doi.org/10.1016/j.jmgm.2010.05.009
31.
31. Q. Wang, Y. Kang, Y. C. Liu, J. W. Shen, and T. Wu, J. Phys. Chem. B 114, 2869 (2010).
http://dx.doi.org/10.1021/jp905995s
32.
32. T. R. Walsh, and S. D. Tomasio, Mol. Phys. 105, 221 (2007).
http://dx.doi.org/10.1080/00268970701197445
33.
33. T. R. Walsh, and S. M. Tomasio, J. Phys. Chem. C 113, 8778 (2009).
http://dx.doi.org/10.1021/jp8087594
34.
34. S. Vaitheeswaran, and A. E. Garcia, J. Chem. Phys. 134, 125101 (2011).
http://dx.doi.org/10.1063/1.3558776
35.
35. R. H. Zhou, X. H. Huang, C. J. Margulis, and B. J. Berne, Science 305, 1605 (2004).
http://dx.doi.org/10.1126/science.1101176
36.
36. P. Liu, X. H. Huang, R. H. Zhou, and B. J. Berne, Nature (London) 437, 159 (2005).
http://dx.doi.org/10.1038/nature03926
37.
37. J. A. King, P. Das, and R. H. Zhou, Proc. Natl. Acad. Sci. U.S.A. 108, 10514 (2011).
http://dx.doi.org/10.1073/pnas.1109621108
38.
38. L. Zheng, M. Chen, and W. Yang, Proc. Natl. Acad. Sci. U.S.A. 105, 20227 (2008).
http://dx.doi.org/10.1073/pnas.0810631106
39.
39. H. Kamberaj and A. van der Vaart, J. Chem. Phys. 130, 074906 (2009).
http://dx.doi.org/10.1063/1.3077857
40.
40. R. R. Johnson, A. Kohlmeyer, A. T. C. Johnson, and M. L. Klein, Nano Lett. 9, 537 (2009).
http://dx.doi.org/10.1021/nl802645d
41.
41. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, and K. Tanabe, J. Am. Chem. Soc. 124, 104 (2002).
http://dx.doi.org/10.1021/ja0105212
42.
42. E. C. Lee, D. Kim, P. Jurecka, P. Tarakeshwar, P. Hobza, and K. S. Kim, J. Phys. Chem. A 111, 3446 (2007).
http://dx.doi.org/10.1021/jp068635t
43.
43. M. Pitonak, P. Neogrady, J. Rezac, P. Jurecka, M. Urban, and P. Hobza, J. Chem. Theory Comput. 4, 1829 (2008).
http://dx.doi.org/10.1021/ct800229h
44.
44. M. Lewis, M. W. Watt, M. L. K. E. Hardebeck, and C. C. Kirkpatrick, J. Am. Chem. Soc. 133, 3854 (2011).
http://dx.doi.org/10.1021/ja105975a
45.
45. C. D. Sherrill and M. O. Sinnokrot, J. Phys. Chem. A 110, 10656 (2006).
http://dx.doi.org/10.1021/jp0610416
46.
46. C. D. Sherrill, B. G. Sumpter, M. O. Sinnokrot, M. S. Marshall, E. G. Hohenstein, R. C. Walker, and I. R. Gould, J. Comput. Chem. 30, 2187 (2009).
47.
47. S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
48.
48. P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006).
http://dx.doi.org/10.1039/b600027d
49.
49. M. O. Sinnokrot and C. D. Sherrill, J. Phys. Chem. A 108, 10200 (2004).
http://dx.doi.org/10.1021/jp0469517
50.
50. T. Janowski and P. Pulay, Chem. Phys. Lett. 447, 27 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.09.003
51.
51. Y. Zhao and D. G. Truhlar, J. Phys. Chem. C 112, 4061 (2008).
http://dx.doi.org/10.1021/jp710918f
52.
52. W. L. Jorgensen and D. L. Severance, J. Am. Chem. Soc. 112, 4768 (1990).
http://dx.doi.org/10.1021/ja00168a022
53.
53. C. Chipot, R. Jaffe, B. Maigret, D. A. Pearlman, and P. A. Kollman, J. Am. Chem. Soc. 118, 11217 (1996).
http://dx.doi.org/10.1021/ja961379l
54.
54. A. T. Macias and A. D. MacKerell, J. Comput. Chem. 26, 1452 (2005).
http://dx.doi.org/10.1002/jcc.20281
55.
55. Y. P. Pang, J. L. Miller, and P. A. Kollman, J. Am. Chem. Soc. 121, 1717 (1999).
http://dx.doi.org/10.1021/ja9828410
56.
56. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1996).
http://dx.doi.org/10.1021/ja00124a002
57.
57. A. de Leon, A. F. Jalbout, and V. A. Basiuk, Chem. Phys. Lett. 457, 185 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.03.079
58.
58. A. F. Jalbout, A. De Leon, and V. A. Basiuk, Comp Mater Sci 44, 310 (2008).
http://dx.doi.org/10.1016/j.commatsci.2008.03.044
59.
59. R. Sharma, J. P. McNamara, R. K. Raju, M. A. Vincent, I. H. Hillier, and C. A. Morgado, Phys. Chem. Chem. Phys. 10, 2767 (2008).
http://dx.doi.org/10.1039/b719764k
60.
60. W. Fan, J. Zeng, and R. Zhang, J. Chem. Theory Comput. 5, 2879 (2009).
http://dx.doi.org/10.1021/ct9002493
61.
61. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7260
62.
62. B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007).
http://dx.doi.org/10.1021/jp070186p
63.
63. M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras, J. Chem. Phys. 114, 5149 (2001).
http://dx.doi.org/10.1063/1.1329889
64.
64. W. L. Jorgensen, D. S. Maxwell, and J. TiradoRives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
65.
65. J. M. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).
http://dx.doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
66.
66. A. D. Mackerell, M. Feig, and C. L. Brooks, J. Comput. Chem. 25, 1400 (2004).
http://dx.doi.org/10.1002/jcc.20065
67.
67. P. Hobza, J. Sponer, and T. Reschel, J. Comput. Chem. 16, 1315 (1995).
http://dx.doi.org/10.1002/jcc.540161102
68.
68. Y. Zhao, X. Wu, J. Yang, and X. C. Zeng, Phys. Chem. Chem. Phys. 13, 11766 (2011).
http://dx.doi.org/10.1039/c1cp20534j
69.
69. L. Zhechkov, T. Heine, S. Patchkovskii, G. Seifert, and H. A. Duarte, J. Chem. Theory Comput. 1, 841 (2005).
http://dx.doi.org/10.1021/ct050065y
70.
70. J. R. Grover, E. A. Walters, and E. T. Hui, J. Phys. Chem. 91, 3233 (1987).
http://dx.doi.org/10.1021/j100296a026
71.
71. Elkingto. Pa and G. Curthoys, J. Phys. Chem. 73, 2321 (1969).
http://dx.doi.org/10.1021/j100727a037
72.
72. E. Arunan and H. S. Gutowsky, J. Chem. Phys. 98, 4294 (1993).
http://dx.doi.org/10.1063/1.465035
73.
73. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
74.
74. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
75.
75. G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature (London) 414, 188 (2001).
http://dx.doi.org/10.1038/35102535
76.
76. P. Xiu, B. Zhou, W. P. Qi, H. J. Lu, Y. S. Tu, and H. P. Fang, J. Am. Chem. Soc. 131, 2840 (2009).
http://dx.doi.org/10.1021/ja804586w
77.
77. P. Xiu, Z. X. Yang, B. Zhou, P. Das, H. P. Fang, and R. H. Zhou, J. Phys. Chem. B 115, 2988 (2011).
http://dx.doi.org/10.1021/jp108303q
78.
78. F. Tournus, and J. C. Charlier, Phys. Rev. B 71, 165421 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.165421
79.
79. L. M. Woods, S. C. Badescu, and T. L. Reinecke, Phys. Rev. B 75, 155415 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155415
80.
80. J. P. Lu, J. J. Zhao, J. Han, and C. K. Yang, Appl. Phys. Lett. 82, 3746 (2003).
http://dx.doi.org/10.1063/1.1577381
81.
81. J. Lu, S. Nagase, X. W. Zhang, D. Wang, M. Ni, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. X. Gao, D. P. Yu, H. Q. Ye, W. N. Mei, and Y. S. Zhou, J. Am. Chem. Soc. 128, 5114 (2006).
http://dx.doi.org/10.1021/ja058214+
82.
82.See supplementary material at http://dx.doi.org/10.1063/1.3675486 for analysis of interaction energies of benzene dimer with different configurations for OPLSAA and CHARMM force fields, complete lists of interaction energies and equilibrium distances of benzene dimer obtained by different methods, nonbonded parameters for aromatic amino acid analogues in MM calculations, snapshots of equilibrium binding structures predicted by QM calculations, and comparison of equilibrium binding structures predicted by QM and MM calculations for the “edge” configuration. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/2/10.1063/1.3675486
Loading
/content/aip/journal/jcp/136/2/10.1063/1.3675486
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/2/10.1063/1.3675486
2012-01-10
2016-02-13

Abstract

Understanding the interaction between carbon nanotubes(CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/2/1.3675486.html;jsessionid=1bngse8arrh4n.x-aip-live-06?itemId=/content/aip/journal/jcp/136/2/10.1063/1.3675486&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd