Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/136/2/10.1063/1.3675847
1.
1. K. Huang, Statistical Mechanics (Wiley, New York, 1963).
2.
2. P. Resibois, J. Stat. Phys. 19, 593 (1978).
http://dx.doi.org/10.1007/BF01011771
3.
3. S. Goldstein and J. Lebowitz, Physica D 193, 53 (2004).
http://dx.doi.org/10.1016/j.physd.2004.01.008
4.
4. V. Arnold and A. Avez, Ergodic Problems of Classical Mechanics (Benjamin, New York, 1968).
5.
5. J. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press, Cambridge, England, 1999).
6.
6. E. M. Sevick, R. Prabhakar, S. R. Williams, and D. J. Searles, Annu. Rev. Phys. Chem.59, 603 (2008).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104555
7.
7. D. J. Evans and D. J. Searles, Phys. Rev. E 50, 1645 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.1645
8.
8. D. J. Evans and D. J. Searles, Phys. Rev. E 52, 5839 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.5839
9.
9. D. J. Evans, D. J. Searles, and S. R. Williams, J. Chem. Phys. 128, 014504 (2008).
http://dx.doi.org/10.1063/1.2812241
10.
10. D. J. Searles and D. J. Evans, Aust. J. Chem. 57, 1119 (2004).
http://dx.doi.org/10.1071/CH04115
11.
11. D. J. Evans, D. J. Searles, and S. R. Williams, J. Stat. Mech.: Theory Exp. P07029 (2009).
http://dx.doi.org/10.1088/1742-5468/2009/07/P07029
12.
12. D. J. Evans and D. J. Searles, Adv. Phys. 51, 1529 (2002).
http://dx.doi.org/10.1080/00018730210155133
13.
13.Conformal relaxation occurs when the non-equilibrium distribution is of the form (f(Γ, t) = exp ( − βH + λ(t)g(Γ))/Z, ∀t) and the deviation function, g, is a constant over the relaxation.
14.
14. D. M. Carberry, J. C. Reid, G. M. Wang, E. M. Sevick, D. J. Searles, and D. J. Evans, Phys. Rev. Lett. 92, 140601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.140601
15.
15. M. Allen and D. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1994).
16.
16. D. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Cambridge Unviersity Press, Cambridge, England, 2008).
17.
17. S. R. Williams, D. J. Searles, and D. J. Evans, Phys. Rev. E 70, 066113 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.066113
18.
18.Simulation parameters: 50 fluid particles, 22 wall particles, Δt = 1 × 10−3, T = 1, ρ = 0.3, and 100 000 trajectories.
19.
19. D. J. Evans, D. J. Searles, and S. R. Williams, J. Chem. Phys. 133, 054507 (2010).
http://dx.doi.org/10.1063/1.3463439
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/2/10.1063/1.3675847
Loading
/content/aip/journal/jcp/136/2/10.1063/1.3675847
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/2/10.1063/1.3675847
2012-01-11
2016-08-27