1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Fast and local predictors of the violation of the Stokes-Einstein law in polymers and supercooled liquids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/21/10.1063/1.4725522
1.
1. J. Baschnagel and F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).
http://dx.doi.org/10.1088/0953-8984/17/32/R02
2.
2. C. A. Angell, K. L. Ngai, G. B. McKenna, P. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).
http://dx.doi.org/10.1063/1.1286035
3.
3. C. Bennemann, C. Donati, J. Baschnagel, and S. C. Glotzer, Nature (London) 399, 246 (1999).
http://dx.doi.org/10.1038/20406
4.
4. A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
http://dx.doi.org/10.1038/nphys1025
5.
5. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
6.
6. R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).
http://dx.doi.org/10.1088/0953-8984/14/23/201
7.
7. C. De Michele and D. Leporini, Phys. Rev. E 63, 036701 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.036701
8.
8. T. Köddermann, R. Ludwig, and D. Paschek, ChemPhysChem 9, 1851 (2008).
http://dx.doi.org/10.1002/cphc.200800102
9.
9. M. C. C. Ribeiro, T. Scopigno, and G. Ruocco, J. Chem. Phys. 135, 164510 (2011).
http://dx.doi.org/10.1063/1.3656872
10.
10. L. Andreozzi, A. D. Schino, M. Giordano, and D. Leporini, Europhys. Lett. 38, 669 (1997).
http://dx.doi.org/10.1209/epl/i1997-00301-2
11.
11. W. Huang and R. Richert, J. Chem. Phys. 133, 214501 (2010).
http://dx.doi.org/10.1063/1.3506405
12.
12. C. De Michele and D. Leporini, Phys. Rev. E 63, 036702 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.036702
13.
13. L. Andreozzi, M. Giordano, and D. Leporini, J. Non-Cryst. Solids 235–237, 219 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00588-2
14.
14. L. Andreozzi, M. Faetti, M. Giordano, and D. Leporini, J. Phys.: Condens. Matter 11, A131 (1999).
http://dx.doi.org/10.1088/0953-8984/11/10A/008
15.
15. D. Prevosto, S. Capaccioli, M. Lucchesi, D. Leporini, and P. Rolla, J. Phys.: Condens. Matter 16, 6597 (2004).
http://dx.doi.org/10.1088/0953-8984/16/36/025
16.
16. J. Douglas and D. Leporini, J. Non-Cryst. Solids 235–237, 137 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00501-8
17.
17. A. Ottochian, C. De Michele, and D. Leporini, Philos. Mag. 88, 4057 (2008).
http://dx.doi.org/10.1080/14786430802348060
18.
18. R. W. Hall and P. G. Wolynes, J. Chem. Phys. 86, 2943 (1987).
http://dx.doi.org/10.1063/1.452045
19.
19. K. L. Ngai, Philos. Mag. 84, 1341 (2004).
http://dx.doi.org/10.1080/14786430310001644080
20.
20. K. L. Ngai, J. Non-Cryst. Solids 275, 7 (2000).
http://dx.doi.org/10.1016/S0022-3093(00)00238-6
21.
21. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.953
22.
22. F. Starr, S. Sastry, J. F. Douglas, and S. Glotzer, Phys. Rev. Lett. 89, 125501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.125501
23.
23. A. Widmer-Cooper and P. Harrowell, Phys. Rev. Lett. 96, 1857014 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.185701
24.
24. H. Zhang, D. J. Srolovitz, J. F. Douglas, and J. A. Warren, Proc. Natl. Acad. Sci. U.S.A. 106, 7735 (2009).
http://dx.doi.org/10.1073/pnas.0900227106
25.
25. J. Dudowicz, K. F. Freed, and J. F. Douglas, Adv. Chem. Phys. 137, 125 (2008).
http://dx.doi.org/10.1002/SERIES2007
26.
26. U. Buchenau and R. Zorn, Europhys. Lett. 18, 523 (1992).
http://dx.doi.org/10.1209/0295-5075/18/6/009
27.
27. T. Scopigno, G. Ruocco, F. Sette, and G. Monaco, Science 302, 849 (2003).
http://dx.doi.org/10.1126/science.1089446
28.
28. A. P. Sokolov, E. Rössler, A. Kisliuk, and D. Quitmann, Phys. Rev. Lett. 71, 2062 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2062
29.
29. U. Buchenau and A. Wischnewski, Phys. Rev. B 70, 092201 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.092201
30.
30. V. N. Novikov and A. P. Sokolov, Nature (London) 431, 961 (2004).
http://dx.doi.org/10.1038/nature02947
31.
31. L. Larini, A. Ottochian, C. De Michele, and D. Leporini, Nat. Phys. 4, 42 (2008).
http://dx.doi.org/10.1038/nphys788
32.
32. A. Ottochian and D. Leporini, Philos. Mag. 91, 1786 (2011).
http://dx.doi.org/10.1080/14786435.2010.521530
33.
33. A. Ottochian, C. De Michele, and D. Leporini, J. Chem. Phys. 131, 224517 (2009).
http://dx.doi.org/10.1063/1.3269041
34.
34. C. De Michele, E. Del Gado, and D. Leporini, Soft Matter 7, 4025 (2011).
http://dx.doi.org/10.1039/c0sm00941e
35.
35. A. Ottochian and D. Leporini, J. Non-Cryst. Solids 357, 298 (2011).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.05.094
36.
36. F. Puosi and D. Leporini, J. Chem. Phys. 136, 041104 (2012).
http://dx.doi.org/10.1063/1.3681291
37.
37.We assume τα ∝ η/T in harmony with both the Rouse model of unentangled polymers,38 numerical results,41 and experiments on glass-forming systems.42 The alternative choice τα ∝ η leads to virtually identical results and suppresses the slight upward bending of the product DMτα at small R and values.
38.
38. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1988).
39.
39. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed. (Academic, 2006).
40.
40. F. Puosi and D. Leporini, J. Phys. Chem. B 115, 14046 (2011).
http://dx.doi.org/10.1021/jp203659r
41.
41. R. Yamamoto and A. Onuki, Phys. Rev. Lett. 81, 4915 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4915
42.
42. F. Mezei, W. Knaak, and B. Farago, Phys. Rev. Lett. 58, 571 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.571
43.
43. M. Mondello, G. S. Grest, E. B. Webb, and P. Peczak, J. Chem. Phys. 109, 798 (1998).
http://dx.doi.org/10.1063/1.476619
44.
44. F. Puosi and D. Leporini, J. Chem. Phys. 136, 164901 (2012).
http://dx.doi.org/10.1063/1.4704674
45.
45. D. Leporini, Phys. Rev. A 49, 992 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.992
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/21/10.1063/1.4725522
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The structural relaxation time τα of polymers vs ⟨u 2⟩, Eq. (3) (data in MD units). The time unit τ MD corresponds to 1 − 10 ps.31 The dashed line across the data is Eq. (8). Empty circles locate the sets of states labelled as A, …, F with equal ⟨u 2⟩ and τα, see Sec. II for details. Inset: monomer mean square displacement and self part of the intermediate scattering function of the E set of states (the dots on each curve mark τα). Note that they coincide from times fairly longer than τα down to the crossover to the two ballistic regimes (distinct due to the different temperatures).

Image of FIG. 2.

Click to view

FIG. 2.

The non-gaussian parameter of the set of states with equal ⟨u 2⟩ and τα, see Sec. II for details (data in MD units). Inset: the NGP maximum vs the ratio R, Eq. (5).

Image of FIG. 3.

Click to view

FIG. 3.

The product DM τα vs (top panel) and the ratio R (bottom panel).37 Note that DM −1 for short linear chains with length M.38 The onset of the SE violation for and R > R c , respectively, is indicated with the full vertical lines (uncertainty marked by dashed lines). The thick line in the bottom panel is Eq. (8) in terms of R, i.e., a parabola, and the thin line is the corresponding linear approximation for small R values. Note that the SE violation is apparent where the linear approximation is poor.

Loading

Article metrics loading...

/content/aip/journal/jcp/136/21/10.1063/1.4725522
2012-06-01
2014-04-19

Abstract

The violation of the Stokes-Einstein (SE) law is investigated in a melt of linear chains by extensive molecular-dynamics simulations. It is found that the SE breakdown is signaled (with 5% uncertainty) by the monomer mean-square displacement ⟨u 2⟩ on the picosecond time scale. On this time scale the displacements of the next-next-nearest neighbors are uncorrelated. It is shown that: (i) the SE breakdown occurs when ⟨u 2⟩ is smaller than the breadth of the distribution of the square displacements to escape from the first-neighbors cage, (ii) the dynamical heterogeneity affects the form of the master curve of the universal scaling between the structural relaxation and ⟨u 2⟩.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/21/1.4725522.html;jsessionid=aharsohup6i2a.x-aip-live-02?itemId=/content/aip/journal/jcp/136/21/10.1063/1.4725522&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Fast and local predictors of the violation of the Stokes-Einstein law in polymers and supercooled liquids
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/21/10.1063/1.4725522
10.1063/1.4725522
SEARCH_EXPAND_ITEM