1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Phase incremented echo train acquisition in NMR spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/21/10.1063/1.4728105
1.
1. P. Mansfield, “Multi-planar image formation using NMR spin echoes,” J. Phys. C 10, L55L58 (1977).
http://dx.doi.org/10.1088/0022-3719/10/3/004
2.
2. H. Y. Carr and E. M. Purcell, “Effects of diffusion on free precession in nuclear magnetic resonance experiments,” Phys. Rev. 94, 630638 (1954).
http://dx.doi.org/10.1103/PhysRev.94.630
3.
3. S. Meiboom and D. Gill, “Modified spin-echo method for measuring nuclear relaxation times,” Rev. Sci. Instrum. 29, 688 (1958).
http://dx.doi.org/10.1063/1.1716296
4.
4. G. Gaelman and M. G. Prammer, “The CPMG pulse sequence in strong magnetic field gradients with applications to oil-well logging,” J. Magn. Reson., Ser. A 113, 1118 (1995).
http://dx.doi.org/10.1006/jmra.1995.1050
5.
5. A. Ross, M. Czisch, and G. C. King, “Systematic errors associated with the CPMG pulse sequence and their effects on motional analysis of biomolecules,” J. Magn. Reson., Ser. A 124, 355365 (1997).
http://dx.doi.org/10.1006/jmre.1996.1036
6.
6. W. Foltz, J. Stainsby, and G. Wright, “T2 accuracy on a whole-body imager,” Magn. Reson. Med. 38, 759768 (1997).
http://dx.doi.org/10.1002/mrm.1910380512
7.
7. L. Frydman, T. Scherf, and A. Lupulescu, “The acquisition of multidimensional nmr spectra within a single scan,” Proc. Natl. Acad. Sci. U.S.A. 99, 1585815862 (2002).
http://dx.doi.org/10.1073/pnas.252644399
8.
8. N. M. Szeverenyi, A. Bax, and G. E. Maciel, “Magic-angle hopping as an alternative to magic-angle spinning for solid-state NMR,” J. Magn. Reson., Ser. A 61, 440 (1984).
http://dx.doi.org/10.1016/0022-2364(85)90184-2
9.
9. P. J. Grandinetti, J. T. Ash, and N. M. Trease, “Symmetry pathways in solid-state NMR,” Prog. Nucl. Magn. Reson. Spectrosc. 59, 121196 (2011).
http://dx.doi.org/10.1016/j.pnmrs.2010.11.003
10.
10. R. Freeman and H. D. W. Hill, “High-resolution study of nmr spin echoes: “J spectra”,” J. Chem. Phys. 54, 301313 (1971).
http://dx.doi.org/10.1063/1.1674608
11.
11. R. L. Vold, R. R. Vold, and H. E. Simon, “Errors in measurements of transverse relaxation rates,” J. Magn. Reson. 11, 283298 (1973).
http://dx.doi.org/10.1016/0022-2364(73)90054-1
12.
12. G. Gaelman and M. G. Prammer, “Analysis of Carr-Purcell sequences with nonideal pulses,” J. Magn. Reson. B 109, 301309 (1995).
http://dx.doi.org/10.1006/jmrb.1995.9991
13.
13. F. Bãlibanu, K. Hailu, R. Eymael, D. Demco, and B. Blümich, “Nuclear magnetic resonance in inhomogeneous magnetic fields,” J. Magn. Reson. 145, 246258 (2000).
http://dx.doi.org/10.1006/jmre.2000.2089
14.
14. Y.-Q. Song, “Categories of coherence pathways for the CPMG sequence,” J. Magn. Reson. 157, 8291 (2002).
http://dx.doi.org/10.1006/jmre.2002.2577
15.
15. A. D. Bain, “Coherence levels and coherence pathways in NMR. A simple way to design phase cycling procedures,” J. Magn. Reson. 56, 418427 (1984).
http://dx.doi.org/10.1016/0022-2364(84)90305-6
16.
16. G. Bodenhausen, H. Kogler, and R. R. Ernst, “Selection of coherence-transfer pathways in NMR pulse experiments,” J. Magn. Reson. 58, 370388 (1984).
http://dx.doi.org/10.1016/0022-2364(84)90142-2
17.
17. M. H. Levitt, P. K. Madhu, and C. E. Hughes, “Cogwheel phase cycling,” J. Magn. Reson. 155, 300306 (2002).
http://dx.doi.org/10.1006/jmre.2002.2520
18.
18. G. Drobny, A. Pines, S. Sinton, D. Weitekamp, and D. Wemmer, “Fourier transform multiple quantum nuclear magnetic resonance,” Faraday Symp. Chem. Soc. 13, 4955 (1978).
http://dx.doi.org/10.1039/FS9781300049
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4728105 for phase cycling theory review, PIETA signal processing, and J coupling simulation details. [Supplementary Material]
20.
20. K. Dey, J. T. Ash, N. M. Trease, and P. J. Grandinetti, “Trading sensitivity for information: CPMG acquisition in solids,” J. Chem. Phys. 133, 054501 (2010).
http://dx.doi.org/10.1063/1.3463653
21.
21. L. Frydman and J. S. Harwood, “Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR,” J. Am. Chem. Soc. 117, 53675369 (1995).
http://dx.doi.org/10.1021/ja00124a023
22.
22. D. Massiot, B. Touzo, D. Trumeau, J. P. Coutures, J. Virlet, P. Florian, and P. J. Grandinetti, “Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei,” Solid State Nucl. Magn. Reson. 6, 7383 (1996).
http://dx.doi.org/10.1016/0926-2040(95)01210-9
23.
23. P. Florian, F. Fayon, and D. Massiot, “2J Si–O–Si scalar spin-spin coupling in the solid state: Crystalline and glassy wollastonite CaSiO3,” J. Phys. Chem. C 113, 25622572 (2009).
http://dx.doi.org/10.1021/jp8078309
24.
24. B. Blümich, J. Perlo, and F. Casanova, “Mobile single-sided NMR,” Prog. Nucl. Magn. Reson. Spectrosc. 52, 197269 (2008).
http://dx.doi.org/10.1016/j.pnmrs.2007.10.002
25.
25. Y.-Q. Song, H. Cho, T. Hopper, A. E. Pomerantz, and P. Z. Sun, “Magnetic resonance in porous media: Recent progress,” J. Chem. Phys. 128, 052212 (2008).
http://dx.doi.org/10.1063/1.2833581
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/21/10.1063/1.4728105
Loading
/content/aip/journal/jcp/136/21/10.1063/1.4728105
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/21/10.1063/1.4728105
2012-06-04
2014-09-16

Abstract

We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonancespectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, ϕ P , is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, ϕ P , converts the ϕ P dimension into a Δp dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows “single-scan” measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/21/1.4728105.html;jsessionid=cic7obs8krp67.x-aip-live-03?itemId=/content/aip/journal/jcp/136/21/10.1063/1.4728105&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Phase incremented echo train acquisition in NMR spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/21/10.1063/1.4728105
10.1063/1.4728105
SEARCH_EXPAND_ITEM