Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/136/3/10.1063/1.3680558
1.
1. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1932).
2.
2. D. Bohm, Phys. Rev. 85, 166 (1952).
http://dx.doi.org/10.1103/PhysRev.85.166
3.
3. P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, England, 1993).
4.
4. R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005).
5.
5. H. Everett III, Rev. Mod. Phys. 29, 454 (1957).
http://dx.doi.org/10.1103/RevModPhys.29.454
6.
6. M. F. González, X. Giménez, J. González, and J. M. Bofill, J. Math. Chem. 43, 350 (2008).
http://dx.doi.org/10.1007/s10910-006-9201-y
7.
7. B. Poirier, Chem. Phys. 370, 4 (2010).
http://dx.doi.org/10.1016/j.chemphys.2009.12.024
8.
8. A. Bouda, Int. J. Mod. Phys. A 18, 3347 (2003).
http://dx.doi.org/10.1142/S0217751X03015076
9.
9. P. Holland, Ann. Phys. 315, 505 (2005).
http://dx.doi.org/10.1016/j.aop.2004.09.008
10.
10. P. Holland, Proc. R. Soc. London, Ser. A 461, 3659 (2005).
http://dx.doi.org/10.1098/rspa.2005.1525
11.
11. G. Parlant, Y.-C. Ou, K. Park, and B. Poirier, “Classical-like trajectory simulations for accurate computation of quantum reactive scattering probabilities,” Comput. Theor. Chem. (in press).
12.
12. D. Babyuk and R. E. Wyatt, J. Chem. Phys. 124, 214109 (2006).
http://dx.doi.org/10.1063/1.2201739
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/3/10.1063/1.3680558
Loading
/content/aip/journal/jcp/136/3/10.1063/1.3680558
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/3/10.1063/1.3680558
2012-01-19
2016-05-28

Abstract

We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications—theoretical, computational, and interpretational—are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/3/1.3680558.html;jsessionid=z9MU69C2yXZk-spaNWx1aoxf.x-aip-live-06?itemId=/content/aip/journal/jcp/136/3/10.1063/1.3680558&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/136/3/10.1063/1.3680558&pageURL=http://scitation.aip.org/content/aip/journal/jcp/136/3/10.1063/1.3680558'
Right1,Right2,Right3,