1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Improving the density functional theory+U description of CeO2 by including the contribution of the O 2p electrons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/4/10.1063/1.3678309
1.
1. A. Trovarelli, Catalysis by Ceria and Related Materials (Imperial College Press, London, UK, 2002).
2.
2. R. Dictor and S. Roberts, J. Phys. Chem. 93, 5846 (1989).
http://dx.doi.org/10.1021/j100352a038
3.
3. E. C. Su and W. G. Rothschild, J. Catal. 99, 506 (1986).
http://dx.doi.org/10.1016/0021-9517(86)90376-3
4.
4. H. C. Yao and Y. F. Yu Yao, J. Catal. 86, 254 (1984).
http://dx.doi.org/10.1016/0021-9517(84)90371-3
5.
5. B. Engler, E. Koberstein, and P. Schubert, Appl. Catal. 48, 71 (1989).
http://dx.doi.org/10.1016/S0166-9834(00)80267-5
6.
6. T. Miki, T. Ogawa, M. Haneda, N. Kakuta, A. Ueno, S. Tateishi, S. Matsuura, and M. Sato, J. Phys. Chem 94, 6464 (1990).
http://dx.doi.org/10.1021/j100379a056
7.
7. A. Trovarelli, C. de Leitenburg, M. Boaro, and G. Dolcetti, Catal. Today 50, 353 (1999).
http://dx.doi.org/10.1016/S0920-5861(98)00515-X
8.
8. A. Prokofiev, A. Shelykh, and B. Melekh, J. Alloys Compd. 242, 41 (1996).
http://dx.doi.org/10.1016/0925-8388(96)02293-1
9.
9. Z. Yang, T. K. Woo, M. Baudin, and K. Hermansson, J. Chem. Phys. 120, 7741 (2004).
http://dx.doi.org/10.1063/1.1688316
10.
10. M. Nolan, S. Grigoleit, D. C. Sayle, S. C. Parker, and G. W. Watson, Surf. Sci. 576, 217 (2005).
http://dx.doi.org/10.1016/j.susc.2004.12.016
11.
11. D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Phys. Rev. B 75, 035109 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035109
12.
12. C. Loschen, J. Carrasco, K. Neyman, and F. Illas, Phys. Rev. B 75, 035115 (2007);
http://dx.doi.org/10.1103/PhysRevB.75.035115
12.C. Loschen, J. Carrasco, K. Neyman, and F. Illas, Phys. Rev. B 84, 199906E (2011).
http://dx.doi.org/10.1103/PhysRevB.84.199906
13.
13. J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, Phys. Rev. B. 75, 045121 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045121
14.
14. J. L. F. Da Silva, Phys. Rev. B 76, 193108 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.193108
15.
15. C. W. M. Castleton, J. Kullgren, and K. J. Hermansson, J. Chem. Phys. 127, 244704 (2007).
http://dx.doi.org/10.1063/1.2800015
16.
16. G. Kresse, P. Blaha, J. L. F. Da Silva, and M. V. Ganduglia-Pirovano, Phys. Rev. B 72, 237101 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.237101
17.
17. P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, J. Chem. Phys. 125, 034712 (2006).
http://dx.doi.org/10.1063/1.2206184
18.
18. J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández, C. Zicovich-Wilson, M. Alessio, and J. F. Sanz, J. Chem. Theory Comput. 7, 56 (2011).
http://dx.doi.org/10.1021/ct100430q
19.
19. S. Fabris, S. de Gironcoli, S. Baroni, G. Vicario, and G. Balducci, Phys. Rev. B 72, 237102 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.237102
20.
20. M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035105
21.
21. H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari, Phys. Rev. Lett. 97, 103001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.103001
22.
22. H. Hsu, K. Umemoto, M. Cococcioni, and R. Wentzcovitch, Phys. Rev. B 79, 125124 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.125124
23.
23. S. J. Duclos, Y. K. Vohra, A. L. Ruoff, A. Jayaraman, and G. P. Espinosa, Phys. Rev. B 38, 7755 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.7755
24.
24. L. Gerward and J. S Olsen, Powder Diffr. 8, 127 (1993).
25.
25. M. M. Branda, N. C. Hernández, J. F. Sanz, and F. Illas, J. Phys. Chem. C 114, 1934 (2010).
http://dx.doi.org/10.1021/jp910782r
26.
26. N. C. Hernández, R. Grau-Crespo, N. H. de Leeuw, and J. F. Sanz, Phys. Chem. Chem. Phys. 11, 5246 (2009).
http://dx.doi.org/10.1039/b820373c
27.
27. M. M. Branda, N. J. Castellani, R. Grau-Crespo, N. H. de Leeuw, N. C. Hernandez, J. F. Sanz, K. M. Neyman, and F. Illas, J. Chem. Phys. 131, 94702 (2009).
http://dx.doi.org/10.1063/1.3216102
28.
28. V. L. Campo Jr. and M. Cococcioni, J. Phys.: Condens. Matter 22, 055602 (2010).
http://dx.doi.org/10.1088/0953-8984/22/5/055602
29.
29. S. G. Park, B. Magyari-Köpe, and Y. Nishi, Phys. Rev. B 82, 115109 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115109
30.
30. I. A. Nekrasov, M. A. Korotin, and V. I. Anisimov, e-print arXiv:cond-mat/0009107v1.
31.
31. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
32.
32. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
33.
33. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
34.
34. P. Blochl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
35.
35. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
36.
36. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
37.
37. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 48, 4978 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.4978.2
38.
38. S. L Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
39.
39. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
40.
40. E. Wuilloud, B. Delley, W. D. Schneider, and Y. Baer, Phys. Rev. Lett. 53, 202 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.202
41.
41. F. Marabelli and P. Wachter, Phys. Rev. B 36, 1238 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.1238
42.
42. CRC Handbook of Chemistry and Physics, 9th ed., edited by D. R. Lide (CRC Press, Boca Raton, Florida, USA, 2009).
43.
43. M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, Surf. Sci. Rep. 62, 219270 (2007).
http://dx.doi.org/10.1016/j.surfrep.2007.03.002
44.
44. M. Nolan, J. E. Fearon, and G. W. Watson, Solid State Ion. 177, 3069 (2006).
http://dx.doi.org/10.1016/j.ssi.2006.07.045
45.
45. A. B. Kehoe, D. O. Scanlon, and G. W. Watson, Chem. Mater. 23, 4464 (2011).
http://dx.doi.org/10.1021/cm201617d
46.
46. Y. M. Chiang, E. B. Lavik and D. A. Blom, Nanostruct. Mater. 9, 633 (1997).
http://dx.doi.org/10.1016/S0965-9773(97)00142-6
47.
47. M. Nolan, S. Parker, and G. W. Watson, Surf. Sci. 595, 223 (2005).
http://dx.doi.org/10.1016/j.susc.2005.08.015
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/4/10.1063/1.3678309
Loading
/content/aip/journal/jcp/136/4/10.1063/1.3678309
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/4/10.1063/1.3678309
2012-01-23
2014-10-22

Abstract

Density functional theory(DFT) based approaches within the local-density approximation or generalized gradient approximation frameworks fail to predict the correct electron localization in strongly correlated systems due to the lack of cancellation of the Coulomb self-interaction. This problem might be circumvented either by using hybrid functionals or by introducing a Hubbard-like term to account for the on site interactions. This latter DFT+U approach is less expensive and therefore more practical for extensive calculations in solid-state computational simulations. By and large, the U term only affects the metal electrons, in our case the Ce 4f ones. In the present work, we report a systematic analysis of the effect of adding such a U term also to the oxygen 2p electrons. We find that using a set of U f = 5 eV and U p = 5eV effective terms leads to improved description of the lattice parameters,band gaps, and formation and reduction energies of CeO2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/4/1.3678309.html;jsessionid=7onlknd08feoc.x-aip-live-03?itemId=/content/aip/journal/jcp/136/4/10.1063/1.3678309&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Improving the density functional theory+U description of CeO2 by including the contribution of the O 2p electrons
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/4/10.1063/1.3678309
10.1063/1.3678309
SEARCH_EXPAND_ITEM