1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Epitaxial oxide bilayer on Pt (001) nanofacets
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/4/10.1063/1.3678858
1.
1. N. Seriani, W. Pompe, and L. C. Ciacchi, J. Phys. Chem. B 110, 14860 (2006).
http://dx.doi.org/10.1021/jp063281r
2.
2. M. Salmerón, L. Brewer, and G. A. Somorjai, Surf. Sci. 112, 207 (1981).
http://dx.doi.org/10.1016/0039-6028(81)90370-8
3.
3. G. N. Derry and P. N. Ross, Surf. Sci. 140, 165 (1984).
http://dx.doi.org/10.1016/0039-6028(84)90389-3
4.
4. C. Ellinger, A. Stierle, I. Robinson, A. Nefedov, and H. Dosch, J. Phys.: Condens. Mat. 20, 184013 (2008).
http://dx.doi.org/10.1088/0953-8984/20/18/184013
5.
5. T. E. Madey, W. Chen, H. Wang, P. Kaghazchi, and T. Jacob, Chem. Soc. Rev. 37, 2310 (2008).
http://dx.doi.org/10.1039/b719551f
6.
6. V. Komanicky, A. Menzel, K.-C. Chang, and H. You, J. Phys. Chem. B 109, 23543 (2005).
http://dx.doi.org/10.1021/jp0541516
7.
7. H. You, J. Appl. Cryst. 32, 614 (1999).
http://dx.doi.org/10.1107/S0021889899001223
8.
8. W. R. Busing and H. A. Levy, Acta Cryst. 22, 457 (1967)
http://dx.doi.org/10.1107/S0365110X67000970
9.
9. I. K. Robinson, Phys. Rev. B 33, 3830 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.3830
10.
10. A. Menzel, V. Komanicky, K.-C. Chang, and H. You, Phys. Rev. B 75, 35426 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035426
11.
11. Y. S. Chu, H. You, J. A. Tanzer, T. E. Lister, and Z. Nagy, Phys. Rev. Lett. 83, 552 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.552
12.
12. D. Hennessy, V. Komanicky, M. S. Pierce, A. Barbour, and H. You, “Surface x-ray scattering studies of epitaxial oxides on platinum surfaces and nanofacets” (unpublished).
13.
13. F. Lytle, see http://ixs.iit.edu/database/data/Farrel_Lytle_data/ for standard x-ray absorption spectra.
14.
14. P. R. Norton, K. Griffiths, and P. E. Bindner, Surf. Sci. 138, 125 (1984).
http://dx.doi.org/10.1016/0039-6028(84)90500-4
15.
15. H. You, Y. S. Chu, J. A. Tanzer, T. E. Lister, Z. Nagy, A. L. Ankudinov, and J. J. Rehr, Physica B 283, 212 (2000).
http://dx.doi.org/10.1016/S0921-4526(99)01959-6
16.
16. D. Strmcnik, D. Tripkovic, D. van der Vliet, K. C. Chang, V. Komanicky, H. You, G. Karapetrov, J. Greeley, V. Stamenkovic, and N. Markovic, J. Am. Chem. Soc. 130, 15332 (2008).
http://dx.doi.org/10.1021/ja8032185
17.
17. V. Komanicky, H. Iddir, K. C. Chang, A. Menzel, G. Karapetrov, D. C. Hennessy, P. Zapol, and H. You, Electrochim. Acta 55, 7934 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.03.024
18.
18. K. Reuter and M. Scheffler, Phys. Rev. B 65, 035406 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.035406
19.
19. M. W. J. Chase and C. A. Davies, J. Phys. Chem. Ref. Data 14 (Suppl. 1), (1985).
20.
20. H. Iddir, V. Komanicky, S. Ogut, H. You, and P. Zapol, J. Phys. Chem. C 111, 14782 (2007).
http://dx.doi.org/10.1021/jp073041r
21.
21. T. M. Pedersen and W. X. Li, Phys. Chem. Chem. Phys. 8, 1566 (2006).
http://dx.doi.org/10.1039/b515166j
22.
22. S. Helveg and H. T. Lorensen, Surf. Sci. 430, L533 (1999).
http://dx.doi.org/10.1016/S0039-6028(99)00411-2
23.
23. G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).
http://dx.doi.org/10.1063/1.1323224
24.
24. S. A. Krasnikov, S. Murphy, N. Berdunov, A. P. McCoy, K. Radican, and I. V. Shvets, Nanotechnology 21, 335301 (2010).
http://dx.doi.org/10.1088/0957-4484/21/33/335301
25.
25. P. Kaghazchi, T. Jacob, I. Ermanoski, W. Chen, and T. E. Madey, NANO 2, 1280 (2008).
http://dx.doi.org/10.1021/nn800210v
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/4/10.1063/1.3678858
Loading
/content/aip/journal/jcp/136/4/10.1063/1.3678858
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/4/10.1063/1.3678858
2012-01-26
2014-10-22

Abstract

We observed an epitaxial, air-stable, partially registered (2 × 1) oxide bilayer on Pt (001) nanofacets [V. Komanicky, A. Menzel, K.-C. Chang, and H. You, J. Phys. Chem.109, 23543 (2005)]. The bilayer is made of two half Pt layers; the top layer has four oxygen bonds and the second layer two. The positions and oxidation states of the Pt atoms are determined by analyzing crystal truncation rods and resonance scattering data. The positions of oxygen atoms are determined by density functional theory (DFT) calculations. Partial registry on the nanofacets and the absence of such registry on the extended Pt (001) surface prepared similarly are explained in DFT calculations by strain relief that can be accommodated only by nanoscale facets.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/4/1.3678858.html;jsessionid=beo21pb2fsgga.x-aip-live-02?itemId=/content/aip/journal/jcp/136/4/10.1063/1.3678858&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Epitaxial oxide bilayer on Pt (001) nanofacets
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/4/10.1063/1.3678858
10.1063/1.3678858
SEARCH_EXPAND_ITEM