1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Correlation of the instantaneous and the intermediate-time elasticity with the structural relaxation in glassforming systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/4/10.1063/1.3681291
1.
1. C. A. Angell, K. L. Ngai, G. B. McKenna, P. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).
http://dx.doi.org/10.1063/1.1286035
2.
2. J.-P. Hansen and I. McDonald, Theory of Simple Liquids, 3rd ed. (Academic, New York, 2006).
3.
3. A. V. Tobolsky, R. E. Powell, and H. Eyring, in Frontiers in Chemistry, edited by R. E. Burk and O. Grummit (Interscience, New York, 1943), Vol. 1, pp. 125190.
4.
4. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.953
5.
5. S. Nemilov, J. Non-Cryst. Solids 352, 2715 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.04.001
6.
6. B. Zhang, H. Y. Bai, R. J. Wang, Y. Wu, and W. H. Wang, Phys. Rev. B 76, 012201 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.012201
7.
7. M. C. Ribeiro, J. Non-Cryst. Solids 355, 1659 (2009).
http://dx.doi.org/10.1016/j.jnoncrysol.2009.05.050
8.
8. J. Yang and K. S. Schweizer, J. Chem. Phys. 134, 204909 (2011).
http://dx.doi.org/10.1063/1.3592565
9.
9. S. R. Williams, J. Chem. Phys. 135, 131102 (2011).
http://dx.doi.org/10.1063/1.3650323
10.
10. U. Buchenau, J. Chem. Phys. 131, 074501 (2009).
http://dx.doi.org/10.1063/1.3207140
11.
11. A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
http://dx.doi.org/10.1038/nphys1025
12.
12. L. Larini, A. Ottochian, C. De Michele, and D. Leporini, Nat. Phys. 4, 42 (2008).
http://dx.doi.org/10.1038/nphys788
13.
13. B. Schnell, H. Meyer, C. Fond, J. P. Wittmer, and J. Baschnagel, Eur. Phys. J. E 34, 97 (2011).
http://dx.doi.org/10.1140/epje/i2011-11097-4
14.
14. D. C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).
15.
15. K. Yoshimoto, T. S. Jain, K. V. Workum, P. F. Nealey, and J. J. de Pablo, Phys. Rev. Lett. 93, 175501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.175501
16.
16. C. E. Maloney and A. Lemaître, Phys. Rev. E 74, 016118 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.016118
17.
17. A. J. C. Ladd, W. E. Alley, and B. J. Alder, J. Stat. Phys. 48, 1147 (1987).
http://dx.doi.org/10.1007/BF01009538
18.
18. H. Yoshino and M. Mezard, Phys. Rev. Lett. 105, 015504 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.015504
19.
19. D. H. Torchinsky, J. A. Johnson, and K. A. Nelson, J. Chem. Phys. 130, 064502 (2009).
http://dx.doi.org/10.1063/1.3072476
20.
20. B. Xu and G. B. McKenna, J. Chem. Phys. 134, 124902 (2011).
http://dx.doi.org/10.1063/1.3567092
21.
21. Y. P. Mitrofanov, V. A. Khonik, A. V. Granato, D. M. Joncich, and S. V. Khonik, J. Appl. Phys. 109, 073518 (2011).
http://dx.doi.org/10.1063/1.3569749
22.
22. M. P. Allen, Mol. Phys. 52, 705 (1984).
23.
23.Note that, in principle, the stress tensor may be also written in the molecular representation in terms of the centre of mass position and momentum of the polymeric chain, together with internal parameters Ref. 22. These two representations are hydrodynamically equivalent, e.g., to evaluate transport coefficients. However, there are differences–especially at short times–between the atomic and the molecular stress correlation functions Ref. 22.
24.
24. R. Zwanzig and R. Mountain, J. Chem. Phys. 43, 4464 (1965).
http://dx.doi.org/10.1063/1.1696718
25.
25. A. Ottochian, C. De Michele, and D. Leporini, J. Chem. Phys. 131, 224517 (2009).
http://dx.doi.org/10.1063/1.3269041
26.
26. P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
27.
27. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).
http://dx.doi.org/10.1088/0953-8984/20/37/373101
28.
28. T. B. Schrøder, S. Sastry, J. C. Dyre, and S. C. Glotzer, J. Chem. Phys. 112, 9834 (2000).
http://dx.doi.org/10.1063/1.481621
29.
29. T. Geszti, J. Phys. C 16, 5805 (1983).
http://dx.doi.org/10.1088/0022-3719/16/30/010
30.
30. U. Balucani, R. Vallauri, and T. Gaskell, Phys. Rev. A 37, 3386 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.3386
31.
31. F. Puosi and D. Leporini, e-print arXiv:1108.4629v1.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/4/10.1063/1.3681291
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The interaction potential between non-bonded monomers. V 6, 12 is the usual Lennard-Jones potential.

Image of FIG. 2.

Click to view

FIG. 2.

MD results of the relaxation properties of linear chains with M = 3, ρ = 0.984 at the indicated temperatures. Non-bonded monomers interact with the Lennard-Jones potential. Both Newtonian (full lines) and inherent (dashed lines) dynamics are considered. Dots mark the structural relaxation time τα. Top panel: Transient elastic modulus G(t). Note that G(0) = G . The inset magnifies the plateau region at intermediate times. The plateau modulus is defined by G p G(t ), t* is defined in the text. For clarity reasons, fast oscillations of the elastic modulus (in Newtonian dynamics) due to rapid vibrations of the stiff bonds, which are apparent within 0.5 time units, are removed by running averages with time window of about 0.15 time units. Bottom panel: Intermediate scattering function F s (q max , t).

Image of FIG. 3.

Click to view

FIG. 3.

Panel (a): The structural relaxation time τα versus the ratio G /T from MD simulations. Panel (b): Same as in panel (a) with the plateau elastic modulus G p . The dashed line is Eq. (5). Note that replacing G by G p in Eq. (1) leads to a linear master curve differing from the MD results.

Tables

Generic image for table

Click to view

Table I.

Comparison between the inherent and the newtonian elastic modulus G(t) and ISF at initial time and t (the q-dependence of ISF is understood for clarity reasons). Data refer to the states plotted in Fig. 2.

Loading

Article metrics loading...

/content/aip/journal/jcp/136/4/10.1063/1.3681291
2012-01-26
2014-04-23

Abstract

The elastic models of the glass transition relate the increasing solidity of the glassforming systems with the huge slowing down of the structuralrelaxation and the viscous flow. The solidity is quantified in terms of the instantaneous shear modulusG , i.e., the immediate response to a step change in the strain. By molecular-dynamics simulations of a model polymer system, one shows the virtual absence of correlations between the instantaneous elasticity and the structuralrelaxation. Instead, a well-defined scaling is evidenced by considering the elastic response observed at intermediate times after the initial fast stress relaxation. The scaling regime ranges from sluggish states with virtually pure elastic response on the picosecond time scale up to high-mobility states where fast restructuring events are more apparent.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/4/1.3681291.html;jsessionid=7negghf7uc0vt.x-aip-live-06?itemId=/content/aip/journal/jcp/136/4/10.1063/1.3681291&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Correlation of the instantaneous and the intermediate-time elasticity with the structural relaxation in glassforming systems
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/4/10.1063/1.3681291
10.1063/1.3681291
SEARCH_EXPAND_ITEM