1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
On the inverse temperature transition and development of an entropic elastomeric force of the elastin mimetic peptide [LGGVG]3, 7
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/8/10.1063/1.3685454
1.
1. C. A. Hoeve and P. J. Flory, J. Am. Chem. Soc. 80, 6523 (1958).
http://dx.doi.org/10.1021/ja01557a016
2.
2. D. W. Urry and T. M. Parker, J. Muscle Res. Cell. Motil. 23, 543 (2002).
http://dx.doi.org/10.1023/A:1023422925910
3.
3. D. W. Urry, J. Protein. Chem. 7, 1 (1987).
http://dx.doi.org/10.1007/BF01025411
4.
4. D. W. Urry, R. G. Shaw, and K. U. Prasad, Biochem. Biophys. Res. Commun. 130, 50 (1985).
http://dx.doi.org/10.1016/0006-291X(85)90380-8
5.
5. D. W. Urry, T. L. Trapane, and K. U. Prasad, Biopolymers 24, 2345 (1985).
http://dx.doi.org/10.1002/bip.360241212
6.
6. D. W. Urry, T. L. Trapane, and K. U. Prasad, Biochemistry 24, 5182 (1985).
http://dx.doi.org/10.1021/bi00340a034
7.
7. B. Li, D. O. Alonso, and V. Dagett, J. Mol. Biol. 305, 581 (2001).
http://dx.doi.org/10.1006/jmbi.2000.4306
8.
8. H. Meirovitch, J. Miao, and J. Klein-Seetharamanmx-Seetharaman, J. Mol. Biol. 344, 797 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.09.061
9.
9. E. Schreiner, C. Nicolini, B. Ludolph, R. Ravindra, N. Otte, A. Kohlmeyer, R. Rousseau, R. Winter, and D. Marx, Phys. Rev. Lett. 92, 148101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.148101
10.
10. R. Glaves, M. Baer, E. Schreiner, R. Stoll, and D. Marx, Chem. Phys. Chem. 22, 2759 (2008).
http://dx.doi.org/10.1002/cphc.200800474
11.
11. J. R. McDaniel, D. J. Callahan, and A. Chilkoti, Adv. Drug Delivery Rev. 62, 1456 (2010).
http://dx.doi.org/10.1016/j.addr.2010.05.004
12.
12. L. D. Muiznieks, A. S. Weiss, and F. W. Keeley, Biochem. Cell. Biol. 88, 239 (2001).
http://dx.doi.org/10.1139/O09-161
13.
13. D. W. Urry, L. W. Mitchell, T. Ohnishi, and M. M. Long, J. Mol. Biol. 96, 101 (1975).
http://dx.doi.org/10.1016/0022-2836(75)90184-9
14.
14. C. M. Venkatachalam and D. W. Urry, Macromolecules 14, 1225 (1981).
http://dx.doi.org/10.1021/ma50006a017
15.
15. X. L. Yao and M. Hong, J. Am. Chem. Soc. 126, 4199 (2003).
http://dx.doi.org/10.1021/ja036686n
16.
16. X. L. Yao, V. P. Conticello, and M. Hong, Magn. Reson. Chem. 42, 267 (2004).
http://dx.doi.org/10.1002/mrc.1330
17.
17. A. Perry, M. P. Stypa, B. K. Tenn, and K. K. Kumashiro, Biophys. J. 82, 1086 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75468-4
18.
18. A. M. Tamburro and L. Debelle, Int. J. Biochem. Cell. Biol. 31, 261 (1999).
http://dx.doi.org/10.1016/S1357-2725(98)00098-3
19.
19. M. A. Lillie and J. M. Gosline, Int. J. Biol. Macromol. 30, 119 (2002).
http://dx.doi.org/10.1016/S0141-8130(02)00008-9
20.
20. M. Martino, A. Coviello, and A. M. Tamburro, Int. J. Biol. Macromol. 27, 59 (2000).
http://dx.doi.org/10.1016/S0141-8130(99)00118-X
21.
21. F. Leli, A. M. Tamburro, V. Villani, P. Grimaldi, and V. Guantieri, Biopolymers 32, 159 (1992).
22.
22. K. Ohgo, W. P. Niemczura, J. Ashida, M. Okonogi, T. Asakura, and K. K. Kumashiro, Biomacromolecules 7, 3306 (2006).
http://dx.doi.org/10.1021/bm0607168
23.
23. B. Li, D. O. V. Alonso, B. J. Bennion, and V. Daggett, J. Am. Chem. Soc. 123, 11991 (2001).
http://dx.doi.org/10.1021/ja010363e
24.
24. B. Hess, C. Kutnzer, D. V. D. Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
25.
25. W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988).
http://dx.doi.org/10.1021/ja00214a001
26.
26. H. J. C. Berendsen, J. P. M. Postma, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
27.
27. O. Teleman, B. Jonsson, and S. Engstrom, Mol. Phys. 60, 193 (1987).
http://dx.doi.org/10.1080/00268978700100141
28.
28. K. J. Zimmerman, Comput. Chem. 12, 310 (1991).
http://dx.doi.org/10.1002/jcc.540120305
29.
29. I. Andricioaei and M. Karplus, J. Chem. Phys. 115, 6289 (2001).
http://dx.doi.org/10.1063/1.1401821
30.
30. R. Rousseau, E. Schreiner, A. Kohlmeyer, and D. Marx, Biophys. J. 86, 1393 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74210-1
31.
31. C. Sun, O. Mitchell, J. Huang, and G. Boutis, J. Phys. Chem. B 47, 13935 (2011).
http://dx.doi.org/10.1021/jp207607r
32.
32. X. Ma, C. Sun, J. Huang, and G. Boutis, J. Phys. Chem. B 116, 555 (2012).
http://dx.doi.org/10.1021/jp208966k
33.
33. G. Boutis, C. Renner, T. Isahkarov, T. Islam, L. Kannangara, P. Kaur, E. Mananga, A. Ntekim, Y. Rumala, and D. Wei, Biopolymers 87, 352 (2007).
http://dx.doi.org/10.1002/bip.20838
34.
34. S. A. Harris and C. A. Laughton, J. Phys. Condens. Matter 19, 076103 (2007).
http://dx.doi.org/10.1088/0953-8984/19/7/076103
35.
35. P. J. Flory, Statistical Mechanics of Chain Molecules (Wiley, New York, 1969).
36.
36. Z. R. Wasserman and F. R. Salemme, Biopolymers 29, 1613 (1990).
http://dx.doi.org/10.1002/bip.360291211
37.
37. W. Lei, H. H. Tan, C. Jagadish, Q. J. Ren, J. Lu, and Z. H. Chen, App. Phys. Lett. 92, 223108 (2010).
http://dx.doi.org/10.1063/1.3522889
38.
38. M. Siakavellas, A. G. Kontos, and E. Anastassakis, J. Appl. Phys. 84, 517 (1998).
http://dx.doi.org/10.1063/1.368055
39.
39. J. Groenen, A. Mlayah, R. Carles, A. Ponchet, A. Le Corre, and S. Salaun, Appl. Phys. Lett. 69, 943 (1996).
http://dx.doi.org/10.1063/1.116951
40.
40. J. Numata, M. Wan, and E. W. Knapp, Genome. Inform. Ser. 18, 192 (2007).
http://dx.doi.org/10.1142/9781860949920_0019
41.
41. A. Valiaev, D. W. Lim, S. Schmidler, R. L. Clark, A. Chilkoti, and S. Zauscher, J. Am. Chem. Soc. 130, 10939 (2008).
http://dx.doi.org/10.1021/ja800502h
42.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/8/10.1063/1.3685454
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Radius of gyration of Cα for [LGGVG]3 under (a) 50 000 kJ/mol nm2 force constant at a pulling rate of 0.005 nm/ps and (b) a constant force of 20 000 kJ/mol nm.

Image of FIG. 2.

Click to view

FIG. 2.

RMSD averaged over all Cα for the temperatures of 10 °C, 20 °C, 35 °C, and 42 ○C of (a) [VPGVG]3 and (b) [VPGVG]7.

Image of FIG. 3.

Click to view

FIG. 3.

RMSD averaged over all Cα for the temperatures of 10 °C, 20 ○C, 35 °C, and 42 ○C of (a) [LGGVG]3 and (b) [LGGVG]7.

Image of FIG. 4.

Click to view

FIG. 4.

Valine Ramachandran maps computed in the time range of 3–4 ns for (a) [VPGVG]3 at 10 °C, (b) [VPGVG]3 at 42 °C, (c) [LGGVG]3 at 10 °C, and (d) [LGGVG]3 at 42 °C.

Image of FIG. 5.

Click to view

FIG. 5.

Entropy of the [LGGVG]3 (solid line) and [VPGVG]3 (dashed line) peptides as a function of temperature. The entropy was estimated via the quasi-harmonic approach described in the text.

Image of FIG. 6.

Click to view

FIG. 6.

Entropy of the (a) [LGGVG]3 and (b) [VPGVG]3 peptides in relaxed and strained states as a function of the time sampling window (Δt) at 25 °C. The entropy was estimated via the quasi-harmonic approach described in the text.

Image of FIG. 7.

Click to view

FIG. 7.

Histograms of the harmonic oscillator frequencies of (a) [LGGVG]3 and (b) [VPGVG]3 in relaxed and strained states. The frequency was calculated from the eigenvalues of the mass weighted covariance matrix, by employing Eq. (2), as described in the text. The figure highlights an increase in the population at higher frequencies when the peptide is stretched, resulting in a decrease in entropy.

Tables

Generic image for table

Click to view

Table I.

Molecular dynamics simulation results for the [VPGVG] n between 5 °C and 60 °C. The values shown in the table were determined by performing computations over all residues of the peptides. The error bars shown in each of the tabulated values are taken as the standard deviation of the fluctuations observed in the simulations.

Generic image for table

Click to view

Table II.

Molecular dynamics simulation results for the [LGGVG] n peptides between 5 °C and 60 °C. The values shown in the table were determined by performing computations over all residues of the peptides. The error bars shown in each of the tabulated values are taken as the standard deviation of the fluctuations observed in the simulations.

Generic image for table

Click to view

Table III.

Comparison of various physical properties of the [LGGVG]3 and [VPGVG]3 peptides at relaxed and mechanically strained states at 25 °C determined from 1 ns of simulation data. The error bars shown in each of the tabulated values are taken as the standard deviation of the fluctuations observed in the simulations.

Loading

Article metrics loading...

/content/aip/journal/jcp/136/8/10.1063/1.3685454
2012-02-27
2014-04-17

Abstract

We report on a molecular dynamics simulation based study of the thermal and mechanical properties of the elastin mimetic peptide [LGGVG] n (n = 3, 7). Our findings indicate that this peptide undergoes an inverse temperature transition as the temperature is raised from ∼20 °C to 42 °C. The thermal behavior is similar to what has been observed in other well studied short mimetic peptides of elastin. Both [LGGVG] n (n = 3, 7) peptides exhibit an increase in the number of side chain contacts and peptide-peptide hydrogen bonds when the temperature is raised from ∼20 °C to 42 °C. These observations are accompanied by a decrease in the number of proximal water molecules and number of peptide-water hydrogen bonds. This work also reports on a comparison of the thermal and mechanical properties of [LGGVG]3 and [VPGVG]3 and quantifies the interaction with surrounding waters of hydration under mechanically strained conditions. It is demonstrated, via a quasi-harmonic approach, that both model peptides exhibit a reduction in the population of low-frequency modes and an increase in population of high-frequency modes upon elongation. The shift in population of frequency modes causes the peptideentropy to decrease upon elongation and is responsible for the development of an entropic force that gives rise to elasticity. These observations are in disagreement with a previously published notion that model elastin peptides, such as [VPGVG]18, increase in entropy upon elongation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/8/1.3685454.html;jsessionid=7t6f5k1j85a6a.x-aip-live-06?itemId=/content/aip/journal/jcp/136/8/10.1063/1.3685454&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On the inverse temperature transition and development of an entropic elastomeric force of the elastin mimetic peptide [LGGVG]3, 7
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/8/10.1063/1.3685454
10.1063/1.3685454
SEARCH_EXPAND_ITEM