1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Temperature inhomogeneities simulated with multiparticle-collision dynamics
Rent:
Rent this article for
USD
10.1063/1.3687168
/content/aip/journal/jcp/136/8/10.1063/1.3687168
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/8/10.1063/1.3687168
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Example of a temperature profile (circles) and the corresponding particle number density profile (squares). The symbols report the simulated values and the lines correspond respectively to Eqs. (4) and (5).

Image of FIG. 2.
FIG. 2.

(a) Temperature profile with h = 0.5 and walls with virtual particles. Open circles are simulation results, solid lines are the temperatures imposed at the walls, and dashed lines the actual boundary temperatures T(0) and T(L z ). Otherwise stated the employed parameters are h = 0.1, α = 120, ρ = 5, a cubic size L = 40, T c = 0.9, and T h = 1.1. (b) Dimensionless temperature jump T J in Eq. (8) as a function of α (circles, down-axis), and as a function of h (squares, up-axis). (c) Dependence of T J with the inverse of the system length L z in the temperature gradient direction, with α = 30 and L x = 20 = L y .

Image of FIG. 3.
FIG. 3.

T J for walls with thermostats as a function of α, and h. Symbols and parameters similar to Fig. 2. The inset shows the detail of a temperature profile close to the wall for with α = 30, h = 0.1, ρ = 5, and L z = 40.

Image of FIG. 4.
FIG. 4.

Illustration of the periodic simulation box in the presence of a temperature gradient.

Image of FIG. 5.
FIG. 5.

(a) Temperature profile obtained from the velocity exchange algorithm with h = 0.1, α = 120, and ρ = 10. Symbols correspond to the measured temperatures, dashed-line is the estimated temperature profile from Eq. (10). (b) Velocity squared distribution in Eq. (9) for the temperatures T c = 0.9 and T h = 1.1, typically used for the cold and hot baths.

Image of FIG. 6.
FIG. 6.

Thermal diffusivity for two values of ρ. (a) k T as a function of α for h = 0.1. (b) k T as a function of h for α = 120. The insets are a zoom-in for large values of α and small h, respectively. Lines correspond to the analytical approach in Eq. (11) and symbols to simulation results. Continuous lines correspond to ρ = 5 and dashes lines to ρ = 20. Triangles refer to simulations with walls and thermostats, circles to walls with virtual particles, and squares to the velocity exchange algorithm.

Image of FIG. 7.
FIG. 7.

Relative deviation of the simulated thermal diffusivity k T, sim with respect to the analytical approach k T, an , Δk T /k T ≡ (k T, sim k T, an )/k T, an a) as a function of α (b) as a function of h. Simulation values are those presented in Fig. 6 for walls and thermostats. Open symbols and dashed lines employ both analytical contributions in Eq. (11), while solid symbols and solid lines take into account the collisional contribution in Eq. (15).

Loading

Article metrics loading...

/content/aip/journal/jcp/136/8/10.1063/1.3687168
2012-02-27
2014-04-18
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Temperature inhomogeneities simulated with multiparticle-collision dynamics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/8/10.1063/1.3687168
10.1063/1.3687168
SEARCH_EXPAND_ITEM