NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Detailed atomistic Monte Carlo simulations of a polymer melt on a solid surface and around a nanoparticle
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/136/9/10.1063/1.3689316
1.
1. R. Krishnamoorti, MRS Bull. 32, 341 (2007).
http://dx.doi.org/10.1557/mrs2007.233
2.
2. M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. V. Horn, Z. B. Guan, G. H. Chen, and R. S. Krishnan, Science 311, 1740 (2006).
http://dx.doi.org/10.1126/science.1122225
3.
3. M. Stamm and J. U. Sommer, Nature Mater. 6, 260 (2007).
http://dx.doi.org/10.1038/nmat1880
4.
4. J. B. Hooper and K. S. Schweizer, Macromolecules 38, 8858 (2005).
http://dx.doi.org/10.1021/ma051318k
5.
5. S. E. Harton, S. K. Kumar, H. Yang, T. Koga, K. Hicks, E. Lee, J. Mijovic, M. Liu, R. S. Vallery, and D. W. Gidley, Macromolecules 43, 3415 (2010).
http://dx.doi.org/10.1021/ma902484d
6.
6. L. Khounlavong and V. Ganesan, J. Chem. Phys. 130, 104901 (2009).
http://dx.doi.org/10.1063/1.3079138
7.
7. K. F. Mansfield and D. N. Theodorou, Macromolecules 24, 4295 (1991).
http://dx.doi.org/10.1021/ma00015a011
8.
8. M. Doxastakis, Y. L. Chen, O. Guzmán, and J. J. de Pablo, J. Chem. Phys. 120, 9335 (2004).
http://dx.doi.org/10.1063/1.1704634
9.
9. D. Brown, V. Marcadon, P. Mele, and N. D. Alberola, Macromolecules 41, 1499 (2008).
http://dx.doi.org/10.1021/ma701940j
10.
10. A. I. Nakatani, W. Chen, R. G. Schmidt, G. V. Gordon, and C. C. Han, Polymer 42, 3713 (2001).
http://dx.doi.org/10.1016/S0032-3861(00)00771-0
11.
11. F. W. Starr, T. B. Schroder, and S. C. Glotzer, Macromolecules 35, 4481 (2002).
http://dx.doi.org/10.1021/ma010626p
12.
12. M. Surve, V. Pryamitsyn, and V. Ganesan, Langmuir 22, 969 (2006).
http://dx.doi.org/10.1021/la052422y
13.
13. K. T. Marla and J. C. Meredith, Langmuir 20, 1501 (2004).
http://dx.doi.org/10.1021/la035028d
14.
14. M. Vladkov, K. A. Smith, and J. L. Barrat, Macromolecules 38, 571 (2005).
http://dx.doi.org/10.1021/ma048096v
15.
15. K. C. Daoulas, V. A. Harmandaris, and V. G. Mavrantzas, Macromolecules 38, 5780 (2005).
http://dx.doi.org/10.1021/ma050176r
16.
16. T. V. M. Ndoro, E. Voyiatzis, A. Ghanbari, D. N. Theodorou, M. C. Bohm, and F. Müller-Plathe, Macromolecules 44, 2316 (2011).
http://dx.doi.org/10.1021/ma102833u
17.
17. D. Frenkel and B. Smit, Understanding Molecular Simulation From Algorithms to Applications (Academic, California, 2002).
18.
18. M. L. Mansfield, J. Chem. Phys. 77, 1554 (1982).
http://dx.doi.org/10.1063/1.443937
19.
19. P. V. K. Pant and D. N. Theodorou, Macromolecules 28, 7224 (1995).
http://dx.doi.org/10.1021/ma00125a027
20.
20. V. G. Mavrantzas, T. D. Boone, E. Zervopoulou, and D. N. Theodorou, Macromolecules 32, 5072 (1999).
http://dx.doi.org/10.1021/ma981745g
21.
21. A. Uhlherr, V. G. Mavrantzas, M. Doxastakis, and D. N. Theodorou, Macromolecules 34, 8554 (2001).
http://dx.doi.org/10.1021/ma0102060
22.
22. M. Doxastakis, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys. 115, 11339 (2001).
http://dx.doi.org/10.1063/1.1416490
23.
23. M. Doxastakis, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys. 115, 11352 (2001).
http://dx.doi.org/10.1063/1.1416491
24.
24. R. Faller, F. Müller-Plathe, M. Doxastakis, and D. Theodorou, Macromolecules 34, 1436 (2001).
http://dx.doi.org/10.1021/ma0016782
25.
25. P. Gestoso, E. Nicol, M. Doxastakis, and D. N. Theodorou, Macromolecules 36, 6925 (2003).
http://dx.doi.org/10.1021/ma034033l
26.
26. C. D. Wick and D. N. Theodorou, Macromolecules 37, 7026 (2004).
http://dx.doi.org/10.1021/ma049193r
27.
27. L. D. Peristeras, I. G. Economou, and D. N. Theodorou, Macromolecules 38, 386 (2005).
http://dx.doi.org/10.1021/ma048364p
28.
28. C. Baig, O. Alexiadis, and V. G. Mavrantzas, Macromolecules 43, 986 (2010).
http://dx.doi.org/10.1021/ma902199g
29.
29. K. Daoulas, A. Terzis, and V. Mavrantzas, Macromolecules 36, 6674 (2003).
http://dx.doi.org/10.1021/ma021570h
30.
30. N. Karayiannis, V. Mavrantzas, and D. Theodorou, Phys. Rev. Lett. 88, 105503 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.105503
31.
31. B. J. Banaszak and J. J. de Pablo, J. Chem. Phys. 119, 2456 (2003).
http://dx.doi.org/10.1063/1.1583673
32.
32. J. M. H. M. Scheutjens and G. J. Fleer, J. Phys. Chem. 83, 1619 (1980).
http://dx.doi.org/10.1021/j100475a012
33.
33. J. M. H. M. Scheutjens and G. J. Fleer, J. Phys. Chem. 84, 178 (1980).
http://dx.doi.org/10.1021/j100439a011
34.
34. G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, and B. Vincent, Polymers at Interfaces (Chapman and Hall, London, 1993).
35.
35. V. A. Harmandaris, K. C. Daoulas, and V. G. Mavrantzas, Macromolecules 38, 5796 (2005).
http://dx.doi.org/10.1021/ma050177j
36.
36. J. Owicki and H. Scheraga, Chem. Phys. Lett. 47, 600 (1977).
http://dx.doi.org/10.1016/0009-2614(77)85051-3
37.
37. L. Janosi and M. Doxastakis, J. Chem. Phys. 131, 054105 (2009).
http://dx.doi.org/10.1063/1.3183165
38.
38. L. Janosi, A. Prakash, and M. Doxastakis, Biophys. J. 99, 284 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.04.005
39.
39. S. K. Kumar and R. Krishnamoorti, Annu. Rev. Chem. Biomol. Eng. 1, 37 (2010).
http://dx.doi.org/10.1146/annurev-chembioeng-073009-100856
40.
40. D. M. Trombly and V. Ganesan, J. Phys. Chem. 133, 154904 (2010).
http://dx.doi.org/10.1063/1.3493330
41.
41. J. Kalb, D. Dukes, S. K. Kumar, R. S. Hoy, and G. S. Grest, Soft Matter 7, 1418 (2011).
http://dx.doi.org/10.1039/c0sm00725k
42.
42. D. Hone, H. Ji, and P. A. Pincus, Macromolecules 20, 2543 (1987).
http://dx.doi.org/10.1021/ma00176a038
43.
43. M. J. Garvey, T. F. Tadros, and B. Vincent, J. Colloid Interface Sci. 49, 57 (1974).
http://dx.doi.org/10.1016/0021-9797(74)90298-7
44.
44. M. J. Garvey, T. F. Tadros, and B. Vincent, J. Colloid Interface Sci. 55, 440 (1976).
http://dx.doi.org/10.1016/0021-9797(76)90054-0
45.
45. J. A. Baker, R. A. Pearson, and J. C. Berg, Langmuir 5, 339 (1989).
http://dx.doi.org/10.1021/la00086a008
46.
46. R. Greenwood, P. F. Luckham, and T. Gregory, Colloids Surf. A 98, 117 (1995).
http://dx.doi.org/10.1016/0927-7757(95)03114-S
47.
47. G. J. Papakonstantopoulos, K. Yoshimoto, M. Doxastakis, P. F. Nealey, and J. J. de Pablo, Phys. Rev. E 72, 031801 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.031801
48.
48. K. Daoulas, D. Theodorou, V. Harmandaris, N. Karayiannis, and V. Mavrantzas, Macromolecules 38, 7134 (2005).
http://dx.doi.org/10.1021/ma050218b
49.
49. V. Ganesan, L. Khounlavong, and V. Pryamitsyn, Phys. Rev. E 78 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.051804
50.
50. P. Linse and N. Kallrot, Macromolecules 43, 2054 (2010).
http://dx.doi.org/10.1021/ma902338m
51.
51. M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 102, 2569 (1998).
http://dx.doi.org/10.1021/jp972543+
52.
52. E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 (2001).
http://dx.doi.org/10.1007/s008940100045
53.
53. S. K. Nath, F. A. Escobedo, and J. J. de Pablo, J. Chem. Phys. 108, 9905 (1998).
http://dx.doi.org/10.1063/1.476429
54.
54. D. S. Pearson, G. V. Strate, E. von Meerwall, and F. C. Schilling, Macromolecules 20, 1133 (1987).
http://dx.doi.org/10.1021/ma00171a044
55.
55. Y. Muraoka, K. Kamide, and H. Suzuki, Br. Polym. J. 15, 107 (1983).
http://dx.doi.org/10.1002/pi.4980150206
56.
56. N. E. Moe and M. D. Ediger, Phys. Rev. E 59, 623 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.623
57.
57. M. Destrée, A. Lyulin, and J.-P. Ryckaert, Macromolecules 29, 1721 (1996).
http://dx.doi.org/10.1021/ma951063i
58.
58. K. Vollmayr, W. Kob, and K. Binder, Phys. Rev. B 54, 15808 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.15808
59.
59. I. Saika-Voivod, F. Sciortino, and P. H. Poole, Phys. Rev. E 63, 011202 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.011202
60.
60. B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Phys. Rev. Lett. 64, 1955 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1955
61.
61. A. Brodka and T. W. Zerda, J. Chem. Phys. 104, 6319 (1996).
http://dx.doi.org/10.1063/1.471292
62.
62. L. A. Girifalco, J. Phys. Chem. 95, 5370 (1991).
http://dx.doi.org/10.1021/j100167a002
63.
63. Y. Guo, N. Karasawa, and W. A. Goddard, Nature (London) 351, 464 (1991).
http://dx.doi.org/10.1038/351464a0
64.
64. J. H. Walther, R. Jaffe, T. Halicioglu, and P. Koumoutsakos, J. Phys. Chem. B 105, 9980 (2001).
http://dx.doi.org/10.1021/jp011344u
65.
65. F. Eisenhaber, P. Lijnzaad, P. Argos, C. Sander, and M. Scharf, J. Comput. Chem. 16, 273 (1995).
http://dx.doi.org/10.1002/jcc.540160303
66.
66. Z. Chen and F. A. Escobedo, J. Chem. Phys. 113, 11382 (2000).
http://dx.doi.org/10.1063/1.1328069
67.
67. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987).
68.
68. C. D. Wick and J. I. Siepmann, Macromolecules 33, 7207 (2000).
http://dx.doi.org/10.1021/ma000172g
69.
69. V. Harmandaris, M. Doxastakis, V. Mavrantzas, and D. Theodorou, J. Chem. Phys. 116, 436 (2002).
http://dx.doi.org/10.1063/1.1416872
70.
70. C. Chen, P. Depa, J. K. Maranas, and V. G. Sakai, J. Chem. Phys. 128, 124906 (2008).
http://dx.doi.org/10.1063/1.2833545
71.
71. D. Fritz, V. A. Harmandaris, K. Kremer, and V. F. A. van der Vegt, Macromolecules 42, 7579 (2009).
http://dx.doi.org/10.1021/ma901242h
72.
72. M. Doxastakis, Y. L. Chen, and J. J. de Pablo, J. Chem. Phys. 123, 034901 (2005).
http://dx.doi.org/10.1063/1.1953575
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/9/10.1063/1.3689316
Loading
/content/aip/journal/jcp/136/9/10.1063/1.3689316
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/136/9/10.1063/1.3689316
2012-03-01
2015-02-28

Abstract

The molecular factors that govern interfacialinteractions between a polymer melt and a solid surface remain largely unclear despite significant progress made in the last years. Simulations are increasingly employed to elucidate these features, however, equilibration and sampling with models of long macromolecules in such heterogeneous systems present significant challenges. In this study, we couple the application of preferential sampling techniques with connectivity-altering Monte Carlo algorithms to explore the configurational characteristics of a polyethylene melt in proximity to a surface and a highly curved nanoparticle. Designed algorithms allow efficient sampling at all length scales of large systems required to avoid finite-size effects. Using detailed atomistic models for the polymer and realistic structures for a silicasurface and a fullerene, we find that at the extreme limit where particles are comparable to the polymer Kuhn segment length, curvature penalizes the formation of long train segments. As a result, an increased number of shorter contacts belonging to different chains are made competing with the anticipated decrease of the bound layer thickness with particle size if polymer adsorbed per unit area remained constant. For very small nanoparticles, formation of new train segments cannot compete with the overall reduction of adsorbance which is present irrespective of the enthalpic interactions; a result that demonstrates the need for an accurate description of polymer rigidity at these length scales.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/136/9/1.3689316.html;jsessionid=ashhshn9j50fp.x-aip-live-06?itemId=/content/aip/journal/jcp/136/9/10.1063/1.3689316&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Detailed atomistic Monte Carlo simulations of a polymer melt on a solid surface and around a nanoparticle
http://aip.metastore.ingenta.com/content/aip/journal/jcp/136/9/10.1063/1.3689316
10.1063/1.3689316
SEARCH_EXPAND_ITEM