Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/137/1/10.1063/1.4731340
1.
1. A. A. Zavitsas, J. Am. Chem. Soc. 113, 4755 (1991).
http://dx.doi.org/10.1021/ja00013a008
2.
2. P. G. Hajigeorgiou, J. Mol. Spectrosc. 263, 101 (2010).
http://dx.doi.org/10.1016/j.jms.2010.07.003
3.
3. P. M. Morse, Phys. Rev. 34, 57 (1929).
http://dx.doi.org/10.1103/PhysRev.34.57
4.
4. R. Rydberg, Z. Phys. 73, 376 (1932).
http://dx.doi.org/10.1007/BF01341146
5.
5. N. Rosen and P. M. Morse, Phys. Rev. 42, 210 (1932).
http://dx.doi.org/10.1103/PhysRev.42.210
6.
6. M. F. Manning and N. Rosen, Phys. Rev. 44, 951 (1933).
http://dx.doi.org/10.1103/PhysRev.44.951
7.
7. A. A. Frost and B. Musulin, J. Chem. Phys. 22, 1017 (1954).
http://dx.doi.org/10.1063/1.1740254
8.
8. E. R. Lippincott, J. Chem. Phys. 21, 2070 (1953).
http://dx.doi.org/10.1063/1.1698744
9.
9. Y. P. Varshni, Rev. Mod. Phys. 29, 664 (1957).
http://dx.doi.org/10.1103/RevModPhys.29.664
10.
10. T. Tietz, J. Chem. Phys. 38, 3036 (1963).
http://dx.doi.org/10.1063/1.1733648
11.
11. J. N. Murrell and K. S. Sorbie, J. Chem. Soc. Faraday Trans. 70, 1552 (1974).
http://dx.doi.org/10.1039/f29747001552
12.
12. H. Wei, Phys. Rev. A 42, 2524 (1990).
http://dx.doi.org/10.1103/PhysRevA.42.2524
13.
13. D. O. N. Gardner and L. v. Szentpάly, J. Phys. Chem. A 103, 9313 (1999).
http://dx.doi.org/10.1021/jp991864d
14.
14. F. M. Rafi, Phys. Lett. A 205, 383 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00552-E
15.
15. P. G. Hajigeorgiou and R. J. Le Roy, J. Chem. Phys. 112, 3949 (2000).
http://dx.doi.org/10.1063/1.480946
16.
16. S. Lifson, A. T. Hagler, and P. Dauber, J. Am. Chem. Soc. 101, 5111 (1979).
http://dx.doi.org/10.1021/ja00512a001
17.
17. S. L. Mayo, B. D. Olafson, and W. A. Goddard, J. Phys. Chem. 94, 8897 (1990).
http://dx.doi.org/10.1021/j100389a010
18.
18. V. S. Allured, C. M. Kelly, and C. R. Landis, J. Am. Chem. Soc. 113, 1 (1991).
http://dx.doi.org/10.1021/ja00001a001
19.
19. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).
http://dx.doi.org/10.1021/ja00051a040
20.
20. S. Barlow, A. A. Rohl, S. Shi, C. M. Freeman, and D. O’Hare, J. Am. Chem. Soc. 118, 7875 (1996).
http://dx.doi.org/10.1021/ja953680s
21.
21. A. A. Zavitsas, J. Mol. Spectrosc. 221, 67 (2003).
http://dx.doi.org/10.1016/S0022-2852(03)00202-9
22.
22. N. Matsunaga and A. A. Zavitsas, J. Chem. Phys. 120, 5624 (2004).
http://dx.doi.org/10.1063/1.1648637
23.
23. A. A. Zavitsas, J. Chem. Phys. 120, 10033 (2004).
http://dx.doi.org/10.1063/1.1730178
24.
24. A. A. Zavitsas, J. Chem. Phys. 124, 144318 (2006).
http://dx.doi.org/10.1063/1.2191040
25.
25. A. A. Zavitsas, J. Mol. Spectrosc. 236, 168 (2006).
http://dx.doi.org/10.1016/j.jms.2006.01.008
26.
26. J. Y. Seto and R. J. Le Roy, J. Chem. Phys. 113, 3067 (2000).
http://dx.doi.org/10.1063/1.1286979
27.
27. J. A. Coxon and C. S. Dickinson, J. Chem. Phys. 121, 9378 (2004).
http://dx.doi.org/10.1063/1.1788659
28.
28. R. J. Le Roy, Y. Huang, and C. Jary, J. Chem. Phys. 125, 164310 (2006).
http://dx.doi.org/10.1063/1.2354502
29.
29. J. A. Coxon and P. G. Hajigeorgiou, J. Phys. Chem. A 110, 6261 (2006).
http://dx.doi.org/10.1021/jp0606006
30.
30. J. A. Coxon and T. C. Melville, J. Mol. Spectrosc. 235, 235 (2006).
http://dx.doi.org/10.1016/j.jms.2005.11.009
31.
31. J. A. Coxon and P. G. Hajigeorgiou, J. Chem. Phys. 132, 094105 (2010).
http://dx.doi.org/10.1063/1.3319739
32.
32. N. S. Dattani and R. J. Le Roy, J. Mol. Spectrosc. 268, 199 (2011).
http://dx.doi.org/10.1016/j.jms.2011.03.030
33.
33. Y. Huang and R. J. Le Roy, J. Chem. Phys. 119, 7398 (2003).
http://dx.doi.org/10.1063/1.1607313
34.
34. R. J. Le Roy, D. R. T. Appadoo, K. Anderson, and A. Shayesteh, J. Chem. Phys. 123, 204304 (2005).
http://dx.doi.org/10.1063/1.2064947
35.
35. A. Shayesteh, R. D. E. Henderson, R. J. Le Roy, and P. F. Bernath, J. Phys. Chem. A 111, 12495 (2007).
http://dx.doi.org/10.1021/jp075704a
36.
36. M. W. Lee, M. Mella, and A. M. Rappe, J. Chem. Phys. 122, 244103 (2005).
http://dx.doi.org/10.1063/1.1924690
37.
37. J. C. Mauro and A. K. Varshneya, J. Am. Ceram. Soc. 89, 2323 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2005.00803.x
38.
38. L. Cheng and J. Yang, J. Phys. Chem. A 111, 5287 (2007).
http://dx.doi.org/10.1021/jp072238g
39.
39. A. T. Royappa, V. Suri, and J. R. McDonough, J. Mol. Struct. 787, 209 (2006).
http://dx.doi.org/10.1016/j.molstruc.2005.11.008
40.
40. A. Diaf, A. Chouchaoui, and R. L. Lombard, Ann. Phys. 317, 354 (2005).
http://dx.doi.org/10.1016/j.aop.2004.11.010
41.
41. W. C. Qiang and S. H. Dong, Phys. Lett. A 368, 13 (2007).
http://dx.doi.org/10.1016/j.physleta.2007.03.057
42.
42. S. M. Ikhdair, Phys. Scr. 83, 015010 (2011).
http://dx.doi.org/10.1088/0031-8949/83/01/015010
43.
43. M. Badawi, N. Bessis, and G. Bessis, J. Phys. B 5, L157 (1972).
http://dx.doi.org/10.1088/0022-3700/5/8/004
44.
44. J. A. Kunc and F. J. Gordillo-Vάzquez, J. Phys. Chem. A 101, 1595 (1997).
http://dx.doi.org/10.1021/jp962817d
45.
45. Y. Gorbachev, F. J. Gordillo-Vάzquez, and J. A. Kunc, Physica A 247, 108 (1997).
http://dx.doi.org/10.1016/S0378-4371(97)00389-0
46.
46. F. J. Gordillo-Vάzquez and J. A. Kunc, J. Thermophys. Heat Transfer 12, 52 (1998).
http://dx.doi.org/10.2514/2.6301
47.
47. F. J. Gordillo-Vάzquez and J. A. Kunc, J. Mol. Struct.: THEOCHEM 425, 263 (1998).
http://dx.doi.org/10.1016/S0166-1280(97)00258-3
48.
48. F. J. Gordillo-Vάzquez and J. A. Kunc, J. Appl. Phys. 84, 4693 (1998).
http://dx.doi.org/10.1063/1.368712
49.
49. R. M. Macrae, Physica B 404, 862 (2009).
http://dx.doi.org/10.1016/j.physb.2008.11.151
50.
50. G. A. Natanson, Phys. Rev. A 44, 3377 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.3377
51.
51. P. Q. Wang, L. H. Zhang, C. S. Jia, and J. Y. Liu, J. Mol. Spectrosc. 274, 5 (2012).
http://dx.doi.org/10.1016/j.jms.2012.03.005
52.
52. D. Schiöberg, Mol. Phys. 59, 1123 (1986).
http://dx.doi.org/10.1080/00268978600102631
53.
53. J. L. Dunham, Phys. Rev. 41, 721 (1932).
http://dx.doi.org/10.1103/PhysRev.41.721
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/1/10.1063/1.4731340
Loading
/content/aip/journal/jcp/137/1/10.1063/1.4731340
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/137/1/10.1063/1.4731340
2012-07-02
2016-02-10

Abstract

By employing the dissociation energy and the equilibrium bond length for a diatomic molecule as explicit parameters, we generate improved expressions for the well-known Rosen-Morse, Manning-Rosen, Tietz, and Frost-Musulin potential energy functions. It is found that the well-known Tietz potential function that is conventionally defined in terms of five parameters [T. Tietz, J. Chem. Phys.38, 3036 (1963)10.1063/1.1733648] actually only has four independent parameters. It is shown exactly that the Wei [Phys. Rev. A42, 2524 (1990)]10.1103/PhysRevA.42.2524 and the well-known Tietz potential functions are the same solvable empirical function. When the parameter h in the Tietz potential function has the values 0, +1, and −1, the Tietz potential becomes the standard Morse, Rosen-Morse, and Manning-Rosen potentials, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/137/1/1.4731340.html;jsessionid=51d3986s4ida8.x-aip-live-06?itemId=/content/aip/journal/jcp/137/1/10.1063/1.4731340&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd