1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
An adaptive weighted ensemble procedure for efficient computation of free energies and first passage rates
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/137/10/10.1063/1.4748278
1.
1. G. G. Hammes, Y.-C. Chang, and T. G. Oas, Proc. Natl. Acad. Sci. U.S.A. 106, 13737 (2009).
http://dx.doi.org/10.1073/pnas.0907195106
2.
2. T. R. Weikl and C. von Deuster, Proteins 75, 104 (2009).
http://dx.doi.org/10.1002/prot.22223
3.
3. A. Bakan and I. Bahar, Proc. Nat. Acad. Sci. U.S.A. 106, 14349 (2009).
http://dx.doi.org/10.1073/pnas.0904214106
4.
4. J. A. Hanson, K. Duderstadt, L. P. Watkins, S. Bhattacharyya, J. Brokaw, and J.-W. Chu, Proc. Natl. Acad. Sci. U.S.A. 46, 18055 (2007).
http://dx.doi.org/10.1073/pnas.0708600104
5.
5. J. Schlitter, M. Engels, P. Kruger, P. E. Jacoby, and A. Wollmer, Mol. Simul. 10, 291 (2009).
http://dx.doi.org/10.1080/08927029308022170
6.
6. J. Ma and M. Karplus, Proc. Natl. Acad. Sci. U.S.A. 94, 11905 (1997).
http://dx.doi.org/10.1073/pnas.94.22.11905
7.
7. J. Apostolakis, P. Ferrara, and A. Caflisch, J. Chem. Phys. 110, 2099 (1999).
http://dx.doi.org/10.1063/1.477819
8.
8. R. Elber, Chem. Phys. Lett. 139, 375 (1987).
http://dx.doi.org/10.1016/0009-2614(87)80576-6
9.
9. A. Ulitsky and R. Elber, J. Chem. Phys. 92, 1510 (1990).
http://dx.doi.org/10.1063/1.458112
10.
10. S. Fischer and M. Karplus, Chem. Phys. Lett. 194, 252 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85543-J
11.
11. E. M. Sevick, A. T. Bell, and D. N. Theodorou, J. Chem. Phys. 98, 3196 (1993).
http://dx.doi.org/10.1063/1.464093
12.
12. R. E. Gillilan and K. R. Wilson, J. Chem. Phys. 97, 1757 (1992).
http://dx.doi.org/10.1063/1.463163
13.
13. R. Elber, A. Cardenas, A. Ghosh, and H. Stern, Adv. Chem. Phys. 126, 93 (2003).
http://dx.doi.org/10.1002/0471428019.ch3
14.
14. D. Passerone, M. Ceccarelli, and M. Parrinello, J. Chem. Phys. 118, 2025 (2003).
http://dx.doi.org/10.1063/1.1533783
15.
15. R. Olender and R. Elber, J. Chem. Phys. 105, 9299 (1996).
http://dx.doi.org/10.1063/1.472727
16.
16. A. C. Pan, D. Sezer, and B. Roux, J. Phys. Chem. B 112, 3432 (2008).
http://dx.doi.org/10.1021/jp0777059
17.
17. N. A. Temiz, E. Meirovitch, and I. Bahar, Proteins 57, 468 (2004).
http://dx.doi.org/10.1002/prot.20226
18.
18. P. Maragakis and M. Karplus, J. Mol. Biol. 352, 807 (2005).
http://dx.doi.org/10.1016/j.jmb.2005.07.031
19.
19. P. C. Whitford, O. Miyashita, Y. Levy, and J. N. Onuchic, J. Mol. Biol. 266, 1661 (2007).
http://dx.doi.org/10.1016/j.jmb.2006.11.085
20.
20. C. Chennubhotla and I. Bahar, PLoS Comput. Biol. 3, 1716 (2007).
21.
21. J.-W. Chu and G. A. Voth, Biophys. J. 93, 3860 (2007).
http://dx.doi.org/10.1529/biophysj.107.112060
22.
22. Z. Yang, P. Majek, and I. Bahar, PLoS Comput. Biol. 5, e1000360 (2009).
http://dx.doi.org/10.1371/journal.pcbi.1000360
23.
23. Q. Lu and J. Wang, J. Am. Chem. Soc. 130, 4772 (2008).
http://dx.doi.org/10.1021/ja0780481
24.
24. G. G. Maisuradze, P. Senet, C. Czaplewski, A. Liwo, and H. A. Scheraga, J. Phys. Chem. A 114, 4471 (2010).
http://dx.doi.org/10.1021/jp9117776
25.
25. A. Liwo, Y. He, and H. A. Scheraga, Phys. Chem. Chem. Phys. 13, 16890 (2011).
http://dx.doi.org/10.1039/c1cp20752k
26.
26. L. R. Pratt, J. Chem. Phys. 85, 5045 (1986).
http://dx.doi.org/10.1063/1.451695
27.
27. C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler, J. Chem. Phys. 198, 1964 (1998).
http://dx.doi.org/10.1063/1.475562
28.
28. C. Dellago, P. G. Bolhuis, and D. Chandler, J. Chem. Phys. 110, 6617 (1999).
http://dx.doi.org/10.1063/1.478569
29.
29. P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Annu. Rev. Phys. Chem. 53, 291. (2002).
http://dx.doi.org/10.1146/annurev.physchem.53.082301.113146
30.
30. T. S. van Erp, D. Moroni, and P. G. Bolhuis, J. Chem. Phys. 118, 7762 (2003).
http://dx.doi.org/10.1063/1.1562614
31.
31. T. S. van Erp and P. G. Bolhuis, J. Comput. Phys. 205, 157 (2005).
http://dx.doi.org/10.1016/j.jcp.2004.11.003
32.
32. T. S. van Erp, Comput. Phys. Commun. 179, 34 (2008).
http://dx.doi.org/10.1016/j.cpc.2008.01.023
33.
33. R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 024102 (2006).
http://dx.doi.org/10.1063/1.2140273
34.
34. R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 194111 (2006).
http://dx.doi.org/10.1063/1.2198827
35.
35. C. Valeriani, R. J. Allen, M. J. Morellia, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 127, 114109 (2007).
http://dx.doi.org/10.1063/1.2767625
36.
36. E. E. Borrero and F. A. Escobedo, J. Chem. Phys. 127, 164101 (2007).
http://dx.doi.org/10.1063/1.2776270
37.
37. A. K. Faradjian and R. Elber, J. Chem. Phys. 120, 10880 (2004).
http://dx.doi.org/10.1063/1.1738640
38.
38. A. M. A. West, R. Elber, and D. Shalloway, J. Chem. Phys. 126, 145104 (2006).
http://dx.doi.org/10.1063/1.2716389
39.
39. Ch. Schutte, F. Noe, J. Lu, M. Sarich, and E. vanden-Eijnden, J. Chem. Phys. 134, 204105 (2011).
http://dx.doi.org/10.1063/1.3590108
40.
40. B. W. Zhang, D. Jasnow, and D. M. Zuckerman, Proc. Natl. Acad. Sci. U.S.A. 104, 18043 (2007).
http://dx.doi.org/10.1073/pnas.0706349104
41.
41. G. A. Huber and S. Kim, Biophys. J. 70, 97 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79552-8
42.
42. A. Warmflash, P. Bhimalapuram, and A. R. Dinner, J. Chem. Phys. 127, 154112 (2007).
http://dx.doi.org/10.1063/1.2784118
43.
43. A. Dickson, A. Warmflash, and A. R. Dinner, J. Chem. Phys. 130, 074104 (2009).
http://dx.doi.org/10.1063/1.3070677
44.
44. D. R. Glowacki, E. Paci, and D. V. Shalashilin, J. Phys. Chem. B 113, 16603 (2009).
http://dx.doi.org/10.1021/jp9074898
45.
45. D. R. Glowacki, E. Paci, and D. V. Shalashilin, J. Chem. Theory Comput. 7, 1244 (2011).
http://dx.doi.org/10.1021/ct200011e
46.
46. A. Dickson, M. Maienschein-Cline, A. Tovo-Dwyer, J. R. Hammond, and A. R. Dinner, J. Chem. Theory Comput. 7, 2710 (2011).
http://dx.doi.org/10.1021/ct200371n
47.
47. E. vanden-Eijnden and M. Venturoli, J. Chem. Phys. 131, 044120 (2009).
http://dx.doi.org/10.1063/1.3180821
48.
48. S. Kirmizialtin and R. Elber, J. Phys. Chem. A 115, 6137 (2011).
http://dx.doi.org/10.1021/jp111093c
49.
49. D. Bhatt and D. M. Zuckerman, J. Chem. Theory Comput. 6, 3527 (2010).
http://dx.doi.org/10.1021/ct100406t
50.
50. D. Bhatt, B. W. Zhang, and D. M. Zuckerman, J. Chem. Phys. 133, 014110 (2010).
http://dx.doi.org/10.1063/1.3456985
51.
51. T. L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics (Dover Publications, New York, 1984).
52.
52. L. Maragliano, E. Vanden-Eijnden, and B. Roux, J. Chem. Theory Comput. 5, 2589 (2009).
http://dx.doi.org/10.1021/ct900279z
53.
53. S. Kullback and R. A. Leibler, Ann. Math. Stat. 22, 79 (1951).
http://dx.doi.org/10.1214/aoms/1177729694
54.
54. S. B. Ozkan, K. A. Dill, and I. Bahar, Protein Sci. 11, 1958 (2002).
http://dx.doi.org/10.1110/ps.0207102
55.
55. S. B. Ozkan, K. A. Dill, and I. Bahar, Biopolymers 68, 3546 (2003).
http://dx.doi.org/10.1002/bip.10280
56.
56. J. D. Chodera, N. Singhal, W. C. Swope, V. S. Pande, and K. A. Dill, J. Chem. Phys. 126, 155101 (2007).
http://dx.doi.org/10.1063/1.2714538
57.
57. D. Bhatt and D. M. Zuckerman, J. Chem. Theory Comput. 7, 2520 (2011).
http://dx.doi.org/10.1021/ct200086k
58.
58. D. M. Zuckerman, J. Phys. Chem. B 108, 5127 (2004).
http://dx.doi.org/10.1021/jp0370730
59.
59. R. B. Best, Y.-G. Chen, and G. Hummer, Structure 13, 1755 (2005).
http://dx.doi.org/10.1016/j.str.2005.08.009
60.
60. Y. Levy, S. S. Cho, T. Shen, J. N. Onuchic, and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 102, 2373 (2005).
http://dx.doi.org/10.1073/pnas.0409572102
61.
61. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
http://dx.doi.org/10.1063/1.1699114
62.
62. J. Shimada and E. I. Shakhnovich, Proc. Natl. Acad. Sci. U.S.A. 99, 11175 (2002).
http://dx.doi.org/10.1073/pnas.162268099
63.
63. E. Martinez-Nunez and D. V. Shalashilin, J. Chem. Theor. Comput. 2, 912 (2006).
http://dx.doi.org/10.1021/ct060042z
64.
64. D. Chandler, in Computer Simulation of Rare Events and Dynamics of Classical and Quantum Condensed-Phase Systems – Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998).
65.
65. E. Vanden-Eijnden, Transition Path Theory, Lecture Notes in Physics Vol. 703 (Springer-Verlag, Berlin, 2006), p. 439.
66.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/10/10.1063/1.4748278
Loading
/content/aip/journal/jcp/137/10/10.1063/1.4748278
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/137/10/10.1063/1.4748278
2012-09-10
2014-09-01

Abstract

We introduce an adaptive weighted-ensemble procedure (WEP) for efficient and accurate evaluation of first-passage rates between states for two-state systems. The basic idea that distinguishes WEP from conventional weighted-ensemble (WE) methodology is the division of the configuration space into smaller regions and equilibration of the trajectories within each region upon adaptive partitioning of the regions themselves into small grids. The equilibrated conditional/transition probabilities between each pair of regions lead to the determination of populations of the regions and the first-passage times between regions, which in turn are combined to evaluate the first passage times for the forward and backward transitions between the two states. The application of the procedure to a non-trivial coarse–grained model of a 70-residue calcium binding domain of calmodulin is shown to efficiently yield information on the equilibrium probabilities of the two states as well as their first passage times. Notably, the new procedure is significantly more efficient than the canonical implementation of the WE procedure, and this improvement becomes even more significant at low temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/137/10/1.4748278.html;jsessionid=145ibkmcie0vf.x-aip-live-03?itemId=/content/aip/journal/jcp/137/10/10.1063/1.4748278&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An adaptive weighted ensemble procedure for efficient computation of free energies and first passage rates
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/10/10.1063/1.4748278
10.1063/1.4748278
SEARCH_EXPAND_ITEM