1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Beyond the random phase approximation on the cheap: Improved correlation energies with the efficient “radial exchange hole” kernel
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/137/11/10.1063/1.4755286
1.
1. P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964);
http://dx.doi.org/10.1103/PhysRev.136.B864
1.W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
2.
2. R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953);
http://dx.doi.org/10.1103/PhysRev.90.317
2.J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).
http://dx.doi.org/10.1103/PhysRevA.14.36
3.
3. S. Kristyán and P. Pulay, Chem. Phys. Lett. 229, 175 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01027-7
4.
4. J. Seponer, J. Leszczynski, and P. Hobza, J. Comput. Chem. 17, 841 (1996).
http://dx.doi.org/10.1002/(SICI)1096-987X(199605)17:7<841::AID-JCC8>3.0.CO;2-S
5.
5. J. F. Dobson and T. Gould, J. Phys.: Condens. Matter 24, 073201 (2012).
http://dx.doi.org/10.1088/0953-8984/24/7/073201
6.
6. H. Eshuis, J. Bates, and F. Furche, Theor. Chim. Acta 131(1), 1084 (2012).
http://dx.doi.org/10.1007/s00214-011-1084-8
7.
7. X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 74477471 (2012).
http://dx.doi.org/10.1007/s10853-012-6570-4
8.
8. J. F. Dobson and J. Wang, Phys. Rev. Lett. 82, 2123 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2123
9.
9. F. Furche, Phys. Rev. B 64, 195120 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195120
10.
10. T. Miyake, F. Aryasetiawan, T. Kotani, M. van Schilfgaarde, M. Usuda, and K. Terakura, Phys. Rev. B 66, 245103 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.245103
11.
11. M. Fuchs and X. Gonze, Phys. Rev. B 65, 235109 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.235109
12.
12. J. Harl and G. Kresse, Phys. Rev. B 77, 045136 (2008);
http://dx.doi.org/10.1103/PhysRevB.77.045136
12.J. Harl and G. Kresse, Phys. Rev. Lett. 103, 056401 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.056401
12.J. Harl, L. Schimka, and G. Kresse, Phys. Rev. B 81, 115126 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115126
13.
13. S. Lebègue, J. Harl, T. Gould, J. G. Ángyán, G. Kresse, and J. F. Dobson, Phys. Rev. Lett. 105, 196401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.196401
14.
14. L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nature Mater. 9, 741 (2010).
http://dx.doi.org/10.1038/nmat2806
15.
15. A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse, J. Chem. Phys. 131, 154115 (2009).
http://dx.doi.org/10.1063/1.3250347
16.
16. H. Jiang and E. Engel, J. Chem. Phys. 127, 184108 (2007).
http://dx.doi.org/10.1063/1.2795707
17.
17. S. Kurth and J. P. Perdew, Phys. Rev. B 59, 10461 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.10461
18.
18. A. Zangwill and P. Soven, Phys. Rev. Lett. 45, 204 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.204
19.
19. J. F. Dobson and J. Wang, Phys. Rev. B 62, 10038 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10038
20.
20. A. Savin and H.-J. Flad, Int. J. Quantum Chem. 56, 327 (1995);
http://dx.doi.org/10.1002/qua.560560417
20.J. Toulouse, A. Savin, and H.-J. Flad, Int. J. Quantum Chem. 100, 1047 (2004);
http://dx.doi.org/10.1002/qua.20259
20.J. Toulouse, W. Zhu, J. G. Ángyán, and A. Savin, Phys. Rev. A 82, 032502 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.032502
21.
21. A. D. McLachlan and M. A. Ball, Rev. Mod. Phys. 36, 844 (1964).
http://dx.doi.org/10.1103/RevModPhys.36.844
22.
22. M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1212
23.
23. F. Furche and T. V. Voorhis, J. Chem. Phys. 122, 164106 (2005).
http://dx.doi.org/10.1063/1.1884112
24.
24. M. Hellgren and U. von Barth, Phys. Rev. B 78, 115107 (2008);
http://dx.doi.org/10.1103/PhysRevB.78.115107
24.M. Hellgren and U. von Barth, J. Chem. Phys. 132, 044101 (2010).
http://dx.doi.org/10.1063/1.3290947
25.
25. A. Heßelmann and A. Görling, Mol. Phys. 108, 359 (2010);
http://dx.doi.org/10.1080/00268970903476662
25.P. Bleiziffer, A. Heßelmann, and A. Görling, J. Chem. Phys. 136, 134102 (2012).
http://dx.doi.org/10.1063/1.3697845
26.
26. J. F. Dobson, J. Wang, and T. Gould, Phys. Rev. B 66, 081108 (2002);
http://dx.doi.org/10.1103/PhysRevB.66.081108
26.T. Gould and J. F. Dobson, Phys. Rev. A 85, 062504 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.062504
27.
27. A. Heßelmann, Phys. Rev. A 85, 012517 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.012517
28.
28. T. Olsen and K. S. Thygesen, Phys. Rev. B 86, 081103 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.081103
29.
29. J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 45, 101 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.101
30.
30.The choice of function is quite arbitrary and offers much scope for refinement.
31.
31. T. Gould and J. F. Dobson, e-print arXiv:1206.6158 [physics.atom-ph].
32.
32. S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F. Fischer, Phys. Rev. A 47, 3649 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.3649
33.
33. J. M. Standard and P. R. Certain, J. Chem. Phys. 83, 3002 (1985).
http://dx.doi.org/10.1063/1.449203
34.
34. P. Mori-Sánchez, A. J. Cohen, and W. Yang, Phys. Rev. A 85, 042507 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.042507
35.
35. M. Hellgren, D. R. Rohr, and E. K. U. Gross, J. Chem. Phys. 136, 034106 (2012).
http://dx.doi.org/10.1063/1.3676174
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/11/10.1063/1.4755286
Loading
/content/aip/journal/jcp/137/11/10.1063/1.4755286
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/137/11/10.1063/1.4755286
2012-09-21
2015-07-04

Abstract

The “ACFD-RPA” correlation energy functional has been widely applied to a variety of systems to successfully predict energy differences, and less successfully predict absolute correlation energies. Here, we present a parameter-free exchange-correlation kernel that systematically improves absolute correlation energies, while maintaining most of the good numerical properties that make the ACFD-RPA numerically tractable. The radial exchange hole kernel is constructed to approximate the true exchange kernel via a carefully weighted, easily computable radial averaging. Correlation energy errors of atoms with 2–18 electrons show a 13-fold improvement over the RPA and a threefold improvement over the related Petersilka, Gossmann, and Gross kernel, for a mean absolute error of 13 mHa or 5%. The average error is small compared to all but the most difficult to evaluate kernels. van der Waals C 6 coefficients are less well predicted, but still show improvements on the RPA, especially for highly polarisable Li and Na.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/137/11/1.4755286.html;jsessionid=gkmqrnqvtafw.x-aip-live-06?itemId=/content/aip/journal/jcp/137/11/10.1063/1.4755286&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Beyond the random phase approximation on the cheap: Improved correlation energies with the efficient “radial exchange hole” kernel
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/11/10.1063/1.4755286
10.1063/1.4755286
SEARCH_EXPAND_ITEM