1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/137/13/10.1063/1.4757568
1.
1. E. A. C. Lucken, Nuclear Quadrupole Coupling Constants (Academic, London, 1969).
2.
2. P. Pyykkö, Mol. Phys. 106, 1965 (2008).
http://dx.doi.org/10.1080/00268970802018367
3.
3. L. Belpassi, F. Tarantelli, A. Sgamellotti, H. Quiney, J. N. P. van Stralen, and L. Visscher, J. Chem. Phys. 126, 064314 (2007).
http://dx.doi.org/10.1063/1.2436881
4.
4. J. Cederberg, B. Paulson, and C. Conklin, J. Mol. Spectrosc. 265, 92 (2011).
http://dx.doi.org/10.1016/j.jms.2010.12.003
5.
5. P. Pyykkö, Chem. Phys. Lett. 6, 479 (1970).
http://dx.doi.org/10.1016/0009-2614(70)85197-1
6.
6. K. Koch, K. Koepernik, D. van Neck, H. Rosner, and S. Cottenier, Phys. Rev. A 81, 032507 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.032507
7.
7. K. Rose and S. Cottenier, Phys. Chem. Chem. Phys. 14, 11308 (2012).
http://dx.doi.org/10.1039/c2cp40740j
8.
8. N. F. Ramsey, Phys. Rev. 89, 527 (1953).
http://dx.doi.org/10.1103/PhysRev.89.527
9.
9. J. M. Baker and B. Bleaney, Proc. R. Soc. London, Ser. A 245, 156 (1958).
http://dx.doi.org/10.1098/rspa.1958.0074
10.
10. M. J. Clauser, E. Kankeleit, and R. L. Mössbauer, Phys. Rev. Lett. 17, 5 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.5
11.
11. P. Pyykkö, Chem. Phys. Lett. 5, 34 (1970).
http://dx.doi.org/10.1016/0009-2614(70)80123-3
12.
12. M. Filatov, W. Zou, and D. Cremer, J. Chem. Phys. 137, 054113 (2012).
http://dx.doi.org/10.1063/1.4742175
13.
13. N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).
http://dx.doi.org/10.1016/j.adt.2005.04.001
14.
14. C. J. Evans and M. C. L. Gerry, J. Am. Chem. Soc. 122, 1560 (2000);
http://dx.doi.org/10.1021/ja9938985
14.C. J. Evans and M. C. L. Gerry, J. Mol. Spectrosc. 203, 105 (2000);
http://dx.doi.org/10.1006/jmsp.2000.8150
14.L. M. Reynard, C. J. Evans, and M. C. L. Gerry, J. Mol. Spectrosc. 205, 344 (2001).
http://dx.doi.org/10.1006/jmsp.2000.8274
15.
15. C. J. Evans, D. S. Rubinoff, and M. C. L. Gerry, Phys. Chem. Chem. Phys. 2, 3943 (2000);
http://dx.doi.org/10.1039/b004352o
15.J. M. Thomas, N. R. Walker, S. A. Cooke and M. C. L. Gerry, J. Am. Chem. Soc. 126, 1235 (2004);
http://dx.doi.org/10.1021/ja0304300
15.S. A. Cooke and M. C. L. Gerry, J. Am. Chem. Soc. 126, 17000 (2004);
http://dx.doi.org/10.1021/ja044955j
15.C. J. Evans, L. M. Reynard, and M. C. L. Gerry, Inorg. Chem. 40, 6123 (2001).
http://dx.doi.org/10.1021/ic0104407
16.
16. T. Okabayashi, E. Y. Okabayashi, M. Tanimoto, T. Furuya, and S. Saito, Chem. Phys. Lett. 422, 58 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.02.024
17.
17. P. Schwerdtfeger, R. Bast, M. C. L. Gerry, C. R. Jacob, M. Jansen, V. Kellö, A. V. Mudring, A. J. Sadlej, T. Saue, T. Söhnel, and F. E. Wagner, J. Chem. Phys. 122, 124317 (2005).
http://dx.doi.org/10.1063/1.1869975
18.
18. C. Thierfelder, P. Schwerdtfeger, and T. Saue, Phys. Rev. A 76, 034502 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.034502
19.
19. I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004).
http://dx.doi.org/10.1016/j.adt.2004.04.002
20.
20. K. G. Dyall, J. Chem. Phys. 106, 9618 (1997).
http://dx.doi.org/10.1063/1.473860
21.
21. W. Zou, M. Filatov, and D. Cremer, Theor. Chem. Acc. 130, 633 (2011).
http://dx.doi.org/10.1007/s00214-011-1007-8
22.
22. W. Zou, M. Filatov, and D. Cremer, J. Chem. Phys. 134, 244117 (2011).
http://dx.doi.org/10.1063/1.3603454
23.
23. W. Zou, M. Filatov, and D. Cremer, J. Chem. Theory Comput. 8, 2617 (2012).
http://dx.doi.org/10.1021/ct300127e
24.
24. D. A. Pantazis, X.-Y. Chen, C. R. Landis, and F. Neese, J. Chem. Theory Comput. 4, 908 (2008).
http://dx.doi.org/10.1021/ct800047t
25.
25. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005);
http://dx.doi.org/10.1039/b508541a
25.R. Ahlrichs and K. May, Phys. Chem. Chem. Phys. 2, 943 (2000).
http://dx.doi.org/10.1039/a908859h
26.
26. L. Visscher and K. G. Dyall, At. Data Nucl. Data Tables 67, 207 (1997).
http://dx.doi.org/10.1006/adnd.1997.0751
27.
27. K. G. Dyall, J. Phys. Chem. A 113, 12638 (2009);
http://dx.doi.org/10.1021/jp905057q
27.K. G. Dyall, Theor. Chem. Acc. 115, 441 (2006).
http://dx.doi.org/10.1007/s00214-006-0126-0
28.
28. T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/13/10.1063/1.4757568
Loading
/content/aip/journal/jcp/137/13/10.1063/1.4757568
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/137/13/10.1063/1.4757568
2012-10-02
2014-10-02

Abstract

The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/137/13/1.4757568.html;jsessionid=3lfn9krsb65oi.x-aip-live-02?itemId=/content/aip/journal/jcp/137/13/10.1063/1.4757568&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/13/10.1063/1.4757568
10.1063/1.4757568
SEARCH_EXPAND_ITEM