banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
On the precision of quasi steady state assumptions in stochastic dynamics
Rent this article for
View: Figures


Image of FIG. 1.
FIG. 1.

(a) Quasi-steady state approximation. Comparison of deterministic solution of the complete enzymatic system and the reduced system with the quasi-steady state assumption. The dashed line is the substrate trace for the 1D equation with quasi-steady state assumption. For the chosen parameters that satisfy the QSSA validity criterion, the dashed line is reasonably close to the substrate trace for the full model. The substrate trace for both the full and the reduced model settle down to the same steady state (parameters: = 0.01 [1/(sec* μM)], = 0.02, = 0.002, = 0.001 [1/sec], = 25 μM, = 100 μM). (b) Stochastic simulation of the chemical master equation for the complete set enzymatic reactions using the Gillespie algorithm. Overlaid on top, is the reduced stochastic simulation by implementing a Gillespie-like algorithm for the reduced chemical master equation, using the quasi-steady state assumption (Eq. (17) ). The mean of the stochastic simulation is well approximated by the deterministic simulation. The distribution of substrate concentration for the reduced stochastic simulation is different than the distribution obtained for the full stochastic model. The volume of the reaction mixture is 10−17 l.

Image of FIG. 2.
FIG. 2.

Comparison of the cumulative distribution of probability of a certain concentration of the substrate in the reaction volume after the corresponding deterministic simulation has reached steady state. The cumulative distribution for the numerical solution of the chemical master equation for the complete reaction system has same mean (full: 29.92, reduced (Eq. (18) ): 30.66, reduced (Eq. (19) ): 29.88, reduced analytical (using Eqs. (13) and (19) ): 30.12) as that of the reduced system but a different standard deviation (full: 2.60, reduced (Eq. (18) ): 8.36, reduced (Eq. (19) ): 3.21, reduced analytical (using Eqs. (13) and (19) ): 3.16). The Kolmogorov Smirnov test shows that the three distributions are significantly different. The analytical and the numerical solution of the reduced chemical master equation (Eq. (17) ) yield identical results.

Image of FIG. 3.
FIG. 3.

Relationship between the accuracy of the quasi-steady state approximation in predicting the deterministic transients and the accuracy of the reduced stochastic model to predict steady state distributions. (a) The accuracy of the stochastic simulations quantified by the KL divergence between the full and reduced models as a function of the parameter λ which quantifies the QSSA approximation in the deterministic case. The points denoted by (*) are consistent with the data points in the paper by Barik . 17 The circle is around the data point from the example in the previous figures. (b) The accuracy of stochastic simulations quantified as in (a) by the KL distance, as a function of the actual accuracy of the deterministic simulation. Here the accuracy of the deterministic simulations is quantified by the average normalized mean distance (NMSE) between the full and reduced models (see Appendix).

Image of FIG. 4.
FIG. 4.

The dependence of the relative error between the variance of the full system and the variance of the system reduced using the QSSA approach. Solid lines are the analytical results using the LNA approach (Eq. (26) ), and symbols with error bars are obtained directly from simulations. Different colors represent different parameters sets. In each parameter set all parameters are fixed, except for which is varied, to obtain different values of ρ.

Image of FIG. 5.
FIG. 5.

(a) Deterministic simulation for the kinase-phosphatase switch showing bistability. The solid lines are obtained from the simulation of the full system. The dashed lines are from simulations with QSSA. Blue lines are for initial condition (0) = 25 μM and black lines are for initial condition (0) = 4 μM. (b) The source and sink terms for the quasi-steady state reduced model as a function of phosphorylated kinase concentration. The points of intersection of the solid and dashed lines are the fixed points of the system. (c) Potential energy wells for the fixed points in the reduced model. Note that the fixed points of the reduced model are identical to the fixed points of the full model. (Parameters: = 0.001 [1/(sec* μM)], = 0.002, = 0.02 [1/sec], = 0.08 [1/(sec* μM)], = 0.001, = 0.0539, = 0.00212 [1/sec], = 60 μM, = 5 μM.)

Image of FIG. 6.
FIG. 6.

Stochastic switching between bistable states. (a) Green line is the stochastic simulation of the complete reaction system using the Gillespie algorithm. The initial conditions are set to the upper steady state value. The black horizontal line indicates the two stable steady state concentration levels for each species. Note that the mean of the stochastic fluctuations within an equilibrium state is close to the steady state concentration. (b) The red line is the stochastic simulation using the reduced master equation and a Gillespie-like algorithm. Note the difference in the scale of x axis in the plots on the left and right.

Image of FIG. 7.
FIG. 7.

Histogram showing difference in upstate and downstate distribution for the full model and quasi-steady state model for stochastic simulations. > 5.7 μM is classified as upstate and < 5.7 μM is classified as downstate.

Image of FIG. 8.
FIG. 8.

Distribution of residence times in the upstate and downstate for the full model and QSSA model. The total simulation time over which this histogram is calculated is 5 × 108 s. The mean upstate residence time for the full model is 2.70 × 104 s while that for reduced model is 4.93 × 103 s. The mean downstate residence time for full model is 3.25 × 104 s while that for reduced model is 4.70 × 103 s.


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On the precision of quasi steady state assumptions in stochastic dynamics