1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/137/6/10.1063/1.4739750
1.
1. P. W. Anderson, “Through the glass lightly,” Science 267, 1616 (1995).
http://dx.doi.org/10.1126/science.267.5204.1615-d
2.
2. K. Chang, “The nature of glass remains anything but clear,” The New York Times, July 29, 2008.
3.
3. Science 309, 83 (2005), “125th Anniversary Issue: 125 outstanding problems in all of science,” available at http://www.sciencemag.org/site/feature/misc/webfeat/125th/.
4.
4. S. A. Kivelson and G. Tarjus, Nature Mater. 7, 831 (2008).
http://dx.doi.org/10.1038/nmat2304
5.
5. T. Hecksher, A. I. Nielsen, N. B. Olsen, and J. C. Dyre, Nature Phys. 4, 737 (2008).
http://dx.doi.org/10.1038/nphys1033
6.
6. C. A. Angell and I. S. Klein, Nature Phys. 7, 750 (2011).
http://dx.doi.org/10.1038/nphys2113
7.
7. K. L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, Berlin, 2011).
8.
8. C. A. Angell, Relaxations in Complex Systems, edited by K. L. Ngai (Washington, DC, NRL, 1985), p. 3.
9.
9. R. Böhmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J. Chem. Phys. 99, 4201 (1993).
http://dx.doi.org/10.1063/1.466117
10.
10. A. Drozd-Rzoska, S. J. Rzoska, and M. Paluch, J. Chem. Phys. 129, 184509 (2009).
http://dx.doi.org/10.1063/1.3000626
11.
11. H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nature Mater. 9, 324 (2010).
http://dx.doi.org/10.1038/nmat2634
12.
12. H. Vogel, Phys. Z. 22, 645 (1921);
12.G. S. Fulcher, J. Am. Chem. Soc. 8, 339 (1925);
12.G. Tammann and W. Hesse, Z. Anorg. Allg. Chem. 15, 245 (1926).
http://dx.doi.org/10.1002/zaac.19261560121
13.
13. A. K. Doolittle and D. B. Doolittle, J. Appl. Phys. 28, 901 (1957).
http://dx.doi.org/10.1063/1.1722884
14.
14. R. J. Greet and D. Turnbull, J. Chem. Phys. 46, 1243 (1967).
http://dx.doi.org/10.1063/1.1840842
15.
15. G. Adam, and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
16.
16. F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys. 104, 2043 (1996).
http://dx.doi.org/10.1063/1.470961
17.
17. C. Hansen, F. Stickel, P. Berger, R. Richert, and E. W. Fischer, J. Chem. Phys. 107, 1086 (1997).
http://dx.doi.org/10.1063/1.474456
18.
18. S. Corezzi, M. Beiner, H. Huth, K. Schröter, S. Capaccioli, R. Casalini, D. Fioretto, and E. Donth, J. Chem. Phys. 117, 2435 (2002).
http://dx.doi.org/10.1063/1.1486214
19.
19. R. Casalini and C. M. Roland, Phys. Rev. Lett. 92, 245702 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.245702
20.
20. R. Casalini, M. Paluch, and C. M. Roland, J. Chem. Phys. 118, 5701 (2003).
http://dx.doi.org/10.1063/1.1564046
21.
21. T. Blochowicz, C. Gainaru, P. Medick, C. Tschirwitz, and E. A. Rössler, J. Chem. Phys. 124, 134503 (2006).
http://dx.doi.org/10.1063/1.2178316
22.
22. A. Drozd-Rzoska and S. J. Rzoska, Phys. Rev. E 73, 041502 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041502
23.
23. J. C. Martinez-Garcia, J. Ll. Tamarit, and S. J. Rzoska, J. Chem. Phys. 134, 024512 (2011).
http://dx.doi.org/10.1063/1.3514589
24.
24. T. Fujima, H. Frusawa, and K. Ito, Phys. Rev. E 66, 031503 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.031503
25.
25. V. N. Novikov and A. P. Sokolov, Phys. Rev. E 67, 031507 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.031507
26.
26. W. Kob, Survey of Theories of Glass Transition, lecture at School on Glass Formers and Glasses (Bengaulu, 2010); see http://www.jncasr.ac.in/glassnotes/glasslectures/Kob/Walter-Kob-5Jan-Lecture2.pdf).
27.
27. R. Casalini and C. M. Roland, Phys. Rev. B 71, 014210 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014210
28.
28. S. Bair, C. M. Roland, and R. Casalini, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 221, 801 (2007).
http://dx.doi.org/10.1243/13506501JET278
29.
29. C. M. Roland, Soft Matter 4, 2316 (2008).
http://dx.doi.org/10.1039/b804794d
30.
30. S. H. Chen, Y. Zhang, M. Lagi, S. H. Chong, P. Baglioni, and F. Mallamace, J. Phys.: Condens. Matter 21, 504102 (2009).
http://dx.doi.org/10.1088/0953-8984/21/50/504102
31.
31. L. O. Hedges, L. J. Robert, J. P. Garrahan, and D. Chandler, Science 323, 1309 (2009).
http://dx.doi.org/10.1126/science.1166665
32.
32. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S-H. Chen, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 107, 22457 (2010).
http://dx.doi.org/10.1073/pnas.1015340107
33.
33. J. P. Garrahan, Proc. Natl. Acad. Sci. U.S.A. 108, 4701 (2011).
http://dx.doi.org/10.1073/pnas.1101436108
34.
34. H. Tanaka, Phys. Rev. Lett. 90, 055701 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.055701
35.
35. J. P. Eckmann and I. Procaccia, Phys. Rev. E 78, 011503 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.011503
36.
36. H. Bässler, Phys. Rev. Lett. 58, 767 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.767
37.
37. I. Avramov, J. Non-Cryst. Solids 351, 3163 (2005).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.08.021
38.
38. J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009).
http://dx.doi.org/10.1073/pnas.0911705106
39.
39. S. C. Waterton, J. Soc. Glass Technol. 16, 244 (1932).
40.
40. P. Lunkenheimer, S. Kastner, M. Köhler, and A. Loidl, Phys. Rev. E 81, 051504 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.051504
41.
41. H. C. Anderssen, Proc. Natl. Acad. Sci. U.S.A. 102, 6686 (2005).
http://dx.doi.org/10.1073/pnas.0500946102
42.
42. J. C. Martínez-Garcia, Ph.D. dissertation, Technical University of Catalonia, Barcelona, 2011.
43.
43. G. G. Naumis, Phys. Rev. E 71, 026114 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.026114
44.
44. P. K. Gupta and J. C. Mauro, J. Chem. Phys. 130, 094503 (2009).
http://dx.doi.org/10.1063/1.3077168
45.
45. F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys. 102, 6251 (1995).
http://dx.doi.org/10.1063/1.469071
46.
46. R. Richert and C. A. Angell, J. Chem. Phys. 108, 9016 (1998).
http://dx.doi.org/10.1063/1.476348
47.
47. A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627 (1964).
http://dx.doi.org/10.1021/ac60214a047
48.
48. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, New York, 2007).
49.
49. C. Zhang, L. Hu, Y. Yue, and J. C. Mauro, J. Chem. Phys. 133, 014508 (2010).
http://dx.doi.org/10.1063/1.3457670
50.
50. M. Paluch, K. L. Ngai, and S. Hensel-Bielowka, J. Chem. Phys. 114, 10872 (2001).
http://dx.doi.org/10.1063/1.1374556
51.
51. R. B. Bogoslovov, C. M. Roland, A. R. Ellis, A. M. Randall, and C. G. Robertson, Macromolecules 41, 1289 (2008).
http://dx.doi.org/10.1021/ma702372a
52.
52. W. Heinrich and B. Stoll, Colloid Polym. Sci. 263, 873 (1985).
http://dx.doi.org/10.1007/BF01469623
53.
53. F. Stickel, “Untersuchungen der dynamik in niedermolekularen Flüssigkeiten mit dielektrischer spektroskopie,” Ph.D. dissertation (Mainz University, 1995).
54.
54. R. Richert, Physica A 287, 26 (2000).
http://dx.doi.org/10.1016/S0378-4371(00)00451-9
55.
55. C. M. Roland and R. Casalini, J. Chem. Phys. 122, 134505 (2005).
http://dx.doi.org/10.1063/1.1863173
56.
56. S. Pawlus, K. Kunal, L. Hong, and A. P. Sokolov, Polymer 49, 2918 (2008).
http://dx.doi.org/10.1016/j.polymer.2008.04.040
57.
57. S. Corezzi, D. Fioretto, R. Casalini, and P. A. Rolla, J. Non-Cryst. Solids 307–310, 281 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01477-1
58.
58. P. Lunkenheimer, R. Wehn, U. Schneider, and A. Loidl, Phys. Rev. Lett. 95, 055702 (2005);
http://dx.doi.org/10.1103/PhysRevLett.95.055702
58.R. Wehn, P. Lunkenheimer, and A. Loidl, J. Non-Cryst. Solids 353, 3862 (2007).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.03.023
59.
59. C. M. Roland and R. Casalini, J. Phys. Condens. Matter 19, 205118 (2007).
http://dx.doi.org/10.1088/0953-8984/19/20/205118
60.
60. A. Drozd-Rzoska, S. J. Rzoska, S. Pawlus, J. C. Martínez-García, and J. Ll. Tamarit, Phys. Rev. E 82, 031501 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.031501
61.
61. A. Drozd-Rzoska, J. Chem. Phys. 130, 234910 (2009).
http://dx.doi.org/10.1063/1.3153349
62.
62. A. Schönhals, Europhys. Lett. 56, 815 (2001).
http://dx.doi.org/10.1209/epl/i2001-00115-8
63.
63. S. Pawlus, J. Bartos, O. Sausa, J. Kristiak, and M. Paluch, J. Chem. Phys. 124, 104505 (2006).
http://dx.doi.org/10.1063/1.2178808
64.
64. A. Drozd-Rzoska, S. J. Rzoska, S. Pawlus, and J. Ll. Tamarit, Phys. Rev. B 73, 224205 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.224205
65.
65. J. C. Martinez-Garcia, J. Ll. Tamarit, L. C. Pardo, M. Barrio, S. J. Rzoska, and A. Drozd-Rzoska, J. Phys. Chem. B 14, 6099 (2010).
http://dx.doi.org/10.1021/jp100270z
66.
66. M. Köhler, P. Lunkenheimer, Y. Goncharov, R. Wehn, and A. Loidl, J. Non-Cryst. Solids 356, 529 (2010).
http://dx.doi.org/10.1016/j.jnoncrysol.2009.07.029
67.
67. R. Richert, F. Stickel, R. S. Fee, and M. Maroncelli, Chem. Phys. Lett. 229, 302 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01032-3
68.
68. L. C. Pardo, P. Lunkenheimer, and A. Loidl, J. Chem. Phys. 124, 124911 (2006).
http://dx.doi.org/10.1063/1.2180786
69.
69. D. Fragiadakis, R. Casalini, and C. M. Roland, J. Phys. Chem. B. 113, 13134 (2009).
http://dx.doi.org/10.1021/jp907553b
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/6/10.1063/1.4739750
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The derivative based analysis of primary relaxation time τ(T) for (Salol) and (MTHF) data. Lines indicate domains of the validity of the VFT parameterization and the linear regression fit estimates the optimal values of D T and T 0 (see Eq. (9) and Ref. 22). Note that the same pattern of the temperature evolution occurs for both compounds. The simple Arrhenius behavior domain should appear as a horizontal line. Note that the crossover temperature from the “Stickel-type”16,17,22 analysis is denoted by T B .

Image of FIG. 2.

Click to view

FIG. 2.

The derivative based analysis of τ(T) data exploring the novel plot, recalling the Waterton-Mauro dependence (Eq. (10) and Ref. 23). Note the “down” (Salol) and “up” (MTHF) behavior in the low temperature dynamic domain, near Tg. Note that the crossover temperature from the new analysis proposed in this paper is denoted by T B.

Image of FIG. 3.

Click to view

FIG. 3.

Correlations of the dynamic crossover temperatures TB and TB′, calculated with the implementation of the smoothing SG filtering procedure. The lower inset presents the coincidence with the MCT “critical-like” temperature (see Eq. (6) and comments below).

Image of FIG. 4.

Click to view

FIG. 4.

The derivative based analysis of the vs. 1/T dependences from Fig. 3 for supercooled Salol and MTHF. The output results are analysed via the SG smoothing procedure (blue curves which have been obtained for SG parameters s = 0, p = 3, n = 15). The dynamical crossover temperatures T B are indicated by dashed lines.

Image of FIG. 5.

Click to view

FIG. 5.

The relationship between the normalized dynamical crossover temperature and the fragility ratio for the subsequent dynamical domains. The “up” and “down” behaviours are manifested at vs. 1/T plot. The parameters m low = m = m P (T g ) and m high = m P (T g) define the fragilities for the low and high temperature domain around T B where T g is ascribed to the virtual extrapolated glass temperature and T g to real glass temperature.

Image of FIG. 6.

Click to view

FIG. 6.

The scaling plot employing Eq. (18) which is based on τ(T) data for Salol (red) and MTHF (green): and is the dynamic crossover temperature. The straight line is a guide for eyes to visualize the “up” and “down” modes for the low temperature dynamic domain close to T g .

Tables

Generic image for table

Click to view

Table I.

The set of glass forming systems used in the analysis, including its symbol abbreviation, temperature interval in which τ(T) data were available RT[K], frequency interval for the dielectric loss measurements determining the relaxation times (Rlog10ν) and source references.

Generic image for table

Click to view

Table II.

The dynamic crossover temperature, “real” and virtual glass temperatures and fragilities linked to the high temperature and low temperature dynamic domains.

Loading

Article metrics loading...

/content/aip/journal/jcp/137/6/10.1063/1.4739750
2012-08-08
2014-04-17

Abstract

One of the most intriguing phenomena in glass forming systems is the dynamic crossover (T B ), occurring well above the glass temperature (T g ). So far, it was estimated mainly from the linearized derivative analysis of the primary relaxation time τ(T) or viscosity η(T) experimental data, originally proposed by Stickel et al. [J. Chem. Phys.104, 2043 (1996)10.1063/1.470961; Stickel et al.J. Chem. Phys.107, 1086 (1997)]10.1063/1.474456. However, this formal procedure is based on the general validity of the Vogel-Fulcher-Tammann equation, which has been strongly questioned recently [T. Hecksher et al.Nature Phys.4, 737 (2008)10.1038/nphys1033; P. Lunkenheimer et al.Phys. Rev. E81, 051504 (2010)10.1103/PhysRevE.81.051504; J. C. Martinez-Garcia et al.J. Chem. Phys.134, 024512 (2011)]10.1063/1.3514589. We present a qualitatively new way to identify the dynamic crossover based on the apparent enthalpy space () analysis via a new plot vs. 1/T supported by the Savitzky-Golay filtering procedure for getting an insight into the noise-distorted high order derivatives. It is shown that depending on the ratio between the “virtual” fragility in the high temperature dynamic domain (m high ) and the “real” fragility at T g (the low temperature dynamic domain, m = m low ) glass formers can be splitted into two groups related to f < 1 and f > 1, (f = m high /m low ). The link of this phenomenon to the ratio between the apparent enthalpy and activation energy as well as the behavior of the configurational entropy is indicated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/137/6/1.4739750.html;jsessionid=28xblrlpcylsk.x-aip-live-01?itemId=/content/aip/journal/jcp/137/6/10.1063/1.4739750&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/6/10.1063/1.4739750
10.1063/1.4739750
SEARCH_EXPAND_ITEM