1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Perspective: Supercooled liquids and glasses
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/137/8/10.1063/1.4747326
1.
1. V. R. V. Ramanan, J. Mater. Eng. 13, 119 (1991).
http://dx.doi.org/10.1007/BF02995816
2.
2. M. F. Ashby and A. L. Greer, Scr. Mater. 54, 321 (2006).
http://dx.doi.org/10.1016/j.scriptamat.2005.09.051
3.
3. M. Wuttig and N. Yamada, Nature Mater. 6, 824 (2007).
http://dx.doi.org/10.1038/nmat2009
4.
4. Y. Shirota, J. Mater. Chem. 15, 75 (2005).
http://dx.doi.org/10.1039/b413819h
5.
5. S. R. Forrest and M. E. Thompson, Chem. Rev. 107, 923 (2007).
http://dx.doi.org/10.1021/cr0501590
6.
6. C. Soutis, Mater. Sci. Eng., A 412, 171 (2005).
http://dx.doi.org/10.1016/j.msea.2005.08.064
7.
7. L. M. Martinez and C. A. Angell, Nature (London) 410, 663 (2001).
http://dx.doi.org/10.1038/35070517
8.
8. S. A. Kivelson and G. Tarjus, Nature Mater. 7, 831 (2008).
http://dx.doi.org/10.1038/nmat2304
9.
9. M. L. F. Nascimento and E. D. Zanotto, Phys. Rev. B 73, 024209 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.024209
10.
10. D. J. Plazek, C. A. Bero, and I. C. Chay, J. Non-Cryst. Solids 172, 181 (1994).
http://dx.doi.org/10.1016/0022-3093(94)90431-6
11.
11. S. S. Chang and A. B. Bestul, J. Chem. Phys. 56, 503 (1972).
http://dx.doi.org/10.1063/1.1676895
12.
12. W. Kauzmann, Chem. Rev. 43, 219 (1948).
http://dx.doi.org/10.1021/cr60135a002
13.
13. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
14.
14. J. D. Stevenson and P. G. Wolynes, J. Phys. Chem. A 115, 3713 (2011).
http://dx.doi.org/10.1021/jp1060057
15.
15. A. I. Melcuk, R. A. Ramos, H. Gould, W. Klein, and R. D. Mountain, Phys. Rev. Lett. 75, 2522 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.2522
16.
16. T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.1045
17.
17. M. Mezard and G. Parisi, Phys. Rev. Lett. 82, 747 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.747
18.
18. M. Wolfgardt, J. Baschnagel, W. Paul, and K. Binder, Phys. Rev. E 54, 1535 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.1535
19.
19. K. Schmidt-Rohr and H. W. Spiess, Phys. Rev. Lett. 66, 3020 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.3020
20.
20. S. Butler and P. Harrowell, J. Chem. Phys. 95, 4454 (1991).
http://dx.doi.org/10.1063/1.461768
21.
21. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
22.
22. R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).
http://dx.doi.org/10.1088/0953-8984/14/23/201
23.
23. W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2827
24.
24. U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, and H. W. Spiess, Phys. Rev. Lett. 81, 2727 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2727
25.
25. L. Berthier, Phys. 4, 42 (2011).
http://dx.doi.org/10.1103/Physics.4.42
26.
26. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).
http://dx.doi.org/10.1088/0953-8984/20/37/373101
27.
27. D. J. Wales, Energy Landscapes. Applications to Clusters, Biomolecules and Glasses (Cambridge University Press, Cambridge, 2004).
28.
28. A. Cavagna, Phys. Rep., Phys. Lett. 476, 51 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.03.003
29.
29. F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982).
http://dx.doi.org/10.1103/PhysRevA.25.978
30.
30. A. Saksaengwijit, J. Reinisch, and A. Heuer, Phys. Rev. Lett. 93, 235701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.235701
31.
31. B. Doliwa and A. Heuer, Phys. Rev. E 67, 031506 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.031506
32.
32. R. L. C. Vink and G. T. Barkema, Phys. Rev. B 67, 245201 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.245201
33.
33. S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2064
34.
34. R. D. Kamien and A. J. Liu, Phys. Rev. Lett. 99, 155501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155501
35.
35. N. Xu, D. Frenkel, and A. J. Liu, Phys. Rev. Lett. 106, 245502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.245502
36.
36. A. V. Anikeenko, N. N. Medvedev, and T. Aste, Phys. Rev. E 77, 031101 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.031101
37.
37. M. Hermes and M. Dijkstra, EPL 89, 38005 (2010).
http://dx.doi.org/10.1209/0295-5075/89/38005
38.
38. C. Monthus and J. P. Bouchaud, J. Phys. A 29, 3847 (1996).
http://dx.doi.org/10.1088/0305-4470/29/14/012
39.
39. R. A. Denny, D. R. Reichman, and J. P. Bouchaud, Phys. Rev. Lett. 90, 025503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.025503
40.
40. G. Diezemann and A. Heuer, Phys. Rev. E 83, 031505 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.031505
41.
41. A. Heuer and A. Saksaengwijit, Phys. Rev. E 77, 061507 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.061507
42.
42. N. Lempesis, D. G. Tsalikis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Phys. 135, 204507 (2011).
http://dx.doi.org/10.1063/1.3663207
43.
43. P. Moretti, A. Baronchelli, A. Barrat, and R. Pastor-Satorras, J. Stat. Mech.: Theory Exp. P03032 (2011).
http://dx.doi.org/10.1088/1742-5468/2011/03/P03032
44.
44. Y. Yang and B. Chakraborty, Phys. Rev. E 80, 011501 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.011501
45.
45. J. C. Dyre, Phys. Rev. B 51, 12276 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.12276
46.
46. D. G. Tsalikis, N. Lempesis, G. C. Boulougouris, and D. N. Theodorou, J. Phys. Chem. B 112, 10619 (2008).
http://dx.doi.org/10.1021/jp801296k
47.
47. V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
48.
48. V. Lubchenko and P. G. Wolynes, J. Chem. Phys. 121, 2852 (2004).
http://dx.doi.org/10.1063/1.1771633
49.
49. F. Ritort and P. Sollich, Adv. Phys. 52, 219 (2003).
http://dx.doi.org/10.1080/0001873031000093582
50.
50. J. P. Garrahan and D. Chandler, Phys. Rev. Lett. 89, 035704 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.035704
51.
51. V. K. de Souza and D. J. Wales, J. Chem. Phys. 130, 194508 (2009).
http://dx.doi.org/10.1063/1.3131690
52.
52. D. J. Wales, Int. Rev. Phys. Chem. 25, 237 (2006).
http://dx.doi.org/10.1080/01442350600676921
53.
53. J. P. K. Doye and C. P. Massen, J. Chem. Phys. 122, 084105 (2005).
http://dx.doi.org/10.1063/1.1850468
54.
54. C. P. Massen, J. P. K. Doye, and R. W. Nash, Physica A 382, 683 (2007).
http://dx.doi.org/10.1016/j.physa.2007.04.054
55.
55. C. Cammarota, A. Cavagna, G. Gradenigo, T. S. Grigera, and P. Verrocchio, J. Stat. Mech.: Theory Exp. L12002 (2009).
http://dx.doi.org/10.1088/1742-5468/2009/12/L12002
56.
56. L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.587
57.
57. Structural Glasses and Supercooled Liquids, edited by P. G. Wolynes and V. Lubchenko (Wiley, Hoboken, 2012).
58.
58. V. K. de Souza and P. Harrowell, Phys. Rev. E 80, 041503 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041503
59.
59. A. Widmer-Cooper, P. Harrowell, and H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135701
60.
60. A. Widmer-Cooper and P. Harrowell, J. Non-Cryst. Solids 352, 5098 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.136
61.
61. A. Widmer-Cooper and P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.185701
62.
62. A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
http://dx.doi.org/10.1038/nphys1025
63.
63. C. Brito and M. Wyart, J. Stat. Mech.: Theory Exp. L08003 (2007).
http://dx.doi.org/10.1088/1742-5468/2007/08/L08003
64.
64. C. Brito and M. Wyart, J. Chem. Phys. 131, 024504 (2009).
http://dx.doi.org/10.1063/1.3157261
65.
65. M. S. G. Razul, G. S. Matharoo, and P. H. Poole, J. Phys.: Condens. Matter 23, 235103 (2011).
http://dx.doi.org/10.1088/0953-8984/23/23/235103
66.
66. U. R. Pedersen, T. B. Schrøder, J. C. Dyre, and P. Harrowell, Phys. Rev. Lett. 104, 105701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.105701
67.
67. R. Candelier, O. Dauchot, and G. Biroli, Phys. Rev. Lett. 102, 088001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.088001
68.
68. R. Candelier, A. Widmer-Cooper, J. K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell, and D. R. Reichman, Phys. Rev. Lett. 105, 135702 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.135702
69.
69. C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli, J. P. Bouchaud, F. Ladieu, D. L’Hote, and G. Tarjus, Phys. Rev. E 76, 041510 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.041510
70.
70. L. Berthier, G. Biroli, J. P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hote, F. Ladieu, and M. Pierno, Science 310, 1797 (2005).
http://dx.doi.org/10.1126/science.1120714
71.
71. S. A. Reinsberg, X. H. Qiu, M. Wilhelm, H. W. Spiess, and M. D. Ediger, J. Chem. Phys. 114, 7299 (2001).
http://dx.doi.org/10.1063/1.1369160
72.
72. Dynamical Heterogeneities in Glasses, Colloids and Granular Media, edited by L. Berthier, G. Biroli, J. P. Bouchaud, L. Cipelletti, and W. Van Saarloos (Oxford University Press, Oxford, 2011).
73.
73. P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.12581
74.
74. J. L. Feldman, M. D. Kluge, P. B. Allen, and F. Wooten, Phys. Rev. B 48, 12589 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.12589
75.
75. J. L. Feldman, P. B. Allen, and S. R. Bickham, Phys. Rev. B 59, 3551 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.3551
76.
76. S. N. Taraskin and S. R. Elliott, Physica B 316, 81 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)00429-5
77.
77. H. Shintani and H. Tanaka, Nature Mater. 7, 870 (2008).
http://dx.doi.org/10.1038/nmat2293
78.
78. G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, Nature Mater. 10, 823 (2011).
http://dx.doi.org/10.1038/nmat3134
79.
79. V. N. Novikov, Y. Ding, and A. P. Sokolov, Phys. Rev. E 71, 061501 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.061501
80.
80. G. Parisi, J. Phys.: Condens. Matter 15, S765 (2003).
http://dx.doi.org/10.1088/0953-8984/15/11/302
81.
81. U. Buchenau and H. R. Schober, Philos. Mag. 88, 3885 (2008).
http://dx.doi.org/10.1080/14786430802477976
82.
82. M. T. Dove, M. J. Harris, A. C. Hannon, J. M. Parker, I. P. Swainson, and M. Gambhir, Phys. Rev. Lett. 78, 1070 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1070
83.
83. N. Xu, Front. Phys. 6, 109 (2011).
http://dx.doi.org/10.1007/s11467-010-0102-y
84.
84. A. P. Sokolov, J. Phys.: Condens. Matter 11, A213 (1999).
http://dx.doi.org/10.1088/0953-8984/11/10A/017
85.
85. W. Schirmacher, Europhys. Lett. 73, 892 (2006).
http://dx.doi.org/10.1209/epl/i2005-10471-9
86.
86. W. Schirmacher, G. Ruocco, and T. Scopigno, Phys. Rev. Lett. 98, 025501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.025501
87.
87. V. Lubchenko and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 100, 1515 (2003).
http://dx.doi.org/10.1073/pnas.252786999
88.
88. V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B 71, 014209 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014209
89.
89. D. Kaya, N. L. Green, C. E. Maloney, and M. F. Islam, Science 329, 656 (2010).
http://dx.doi.org/10.1126/science.1187988
90.
90. A. I. Chumakov, G. Monaco, A. Monaco, W. A. Crichton, A. Bosak, R. Rueffer, A. Meyer, F. Kargl, L. Comez, D. Fioretto, H. Giefers, S. Roitsch, G. Wortmann, M. H. Manghnani, A. Hushur, Q. Williams, J. Balogh, K. Parlinski, P. Jochym, and P. Piekarz, Phys. Rev. Lett. 106, 225501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.225501
91.
91. S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Phys. Rev. Lett. 86, 1255 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1255
92.
92. L. van Hove, Phys. Rev. 89, 1189 (1953).
http://dx.doi.org/10.1103/PhysRev.89.1189
93.
93. D. Srivastava and S. K. Sarkar, Phys. Rev. B 85, 024206 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.024206
94.
94. M. Zanatta, G. Baldi, S. Caponi, A. Fontana, C. Petrillo, F. Rossi, and F. Sacchetti, J. Chem. Phys. 135, 174506 (2011).
http://dx.doi.org/10.1063/1.3656697
95.
95. H. E. H. Meijer and L. E. Govaert, Prog. Polym. Sci. 30, 915 (2005).
http://dx.doi.org/10.1016/j.progpolymsci.2005.06.009
96.
96. D. Rodney, A. Tanguy, and D. Vandembroucq, Modell. Simul. Mater. Sci. Eng. 19, 083001 (2011).
http://dx.doi.org/10.1088/0965-0393/19/8/083001
97.
97. A. Tanguy, J. P. Wittmer, F. Leonforte, and J. L. Barrat, Phys. Rev. B 66, 174205 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.174205
98.
98. F. Leonforte, EPL 94, 66002 (2011).
http://dx.doi.org/10.1209/0295-5075/94/66002
99.
99. A. Tanguy, B. Mantisi, and M. Tsamados, EPL 90, 16004 (2010).
http://dx.doi.org/10.1209/0295-5075/90/16004
100.
100. M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. E 80, 026112 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.026112
101.
101. K. Yoshimoto, T. S. Jain, K. V. Workum, P. F. Nealey, and J. J. de Pablo, Phys. Rev. Lett. 93, 175501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.175501
102.
102. D. L. Malandro and D. J. Lacks, J. Chem. Phys. 110, 4593 (1999).
http://dx.doi.org/10.1063/1.478340
103.
103. J. Chattoraj, C. Caroli, and A. Lemaitre, Phys. Rev. Lett. 105, 266001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.266001
104.
104. E. A. Jagla, Phys. Rev. E 76, 046119 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.046119
105.
105. S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. E 82, 055103 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.055103
106.
106. A. Tanguy, F. Leonforte, and J. L. Barrat, Eur. Phys. J. E 20, 355 (2006).
http://dx.doi.org/10.1140/epje/i2006-10024-2
107.
107. N. P. Bailey, J. Schiotz, A. Lemaitre, and K. W. Jacobsen, Phys. Rev. Lett. 98, 095501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.095501
108.
108. E. Lerner and I. Procaccia, Phys. Rev. E 80, 026128 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.026128
109.
109. H. G. E. Hentschel, S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. Lett. 104, 025501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.025501
110.
110. M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.7192
111.
111. M. L. Falk and J. S. Langer, Annu. Rev. Condens. Matter Phys. 2, 353 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140452
112.
112. P. Schall, D. A. Weitz, and F. Spaepen, Science 318, 1895 (2007).
http://dx.doi.org/10.1126/science.1149308
113.
113. T. Voigtmann, Eur. Phys. J. E 34, 106 (2011).
http://dx.doi.org/10.1140/epje/i2011-11106-8
114.
114. E. Del Gado, P. Ilg, M. Kroger, and H. C. Ottinger, Phys. Rev. Lett. 101, 095501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.095501
115.
115. L. S. Loo, R. E. Cohen, and K. K. Gleason, Science 288, 116 (2000).
http://dx.doi.org/10.1126/science.288.5463.116
116.
116. H. N. Lee, K. Paeng, S. F. Swallen, and M. D. Ediger, Science 323, 231 (2009).
http://dx.doi.org/10.1126/science.1165995
117.
117. R. A. Riggleman, K. S. Schweizer, and J. J. de Pablo, Macromolecules 41, 4969 (2008).
http://dx.doi.org/10.1021/ma8001214
118.
118. M. Warren and J. Rottler, Phys. Rev. Lett. 104, 205501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.205501
119.
119. J. M. Caruthers, D. B. Adolf, R. S. Chambers, and P. Shrikhande, Polymer 45, 4577 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.04.021
120.
120. K. Chen, E. J. Saltzman, and K. S. Schweizer, Annu. Rev. Condens. Matter Phys. 1, 277 (2010).
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104110
121.
121. R. A. Riggleman, H. N. Lee, M. D. Ediger, and J. J. de Pablo, Soft Matter 6, 287 (2010).
http://dx.doi.org/10.1039/b912288e
122.
122. T. Hecksher, A. I. Nielsen, N. B. Olsen, and J. C. Dyre, Nat. Phys. 4, 737 (2008).
http://dx.doi.org/10.1038/nphys1033
123.
123. Y. S. Elmatad, D. Chandler, and J. P. Garrahan, J. Phys. Chem. B 113, 5563 (2009).
http://dx.doi.org/10.1021/jp810362g
124.
124. J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009).
http://dx.doi.org/10.1073/pnas.0911705106
125.
125. P. A. O’Connell and G. B. McKenna, J. Chem. Phys. 110, 11054 (1999).
http://dx.doi.org/10.1063/1.479046
126.
126. D. Kivelson, G. Tarjus, X. L. Xiao, and S. A. Kivelson, Phys. Rev. E 54, 5873 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.5873
127.
127. A. Kushima, X. Lin, J. Li, J. Eapen, J. C. Mauro, X. Qian, P. Diep, and S. Yip, J. Chem. Phys. 130, 224504 (2009).
http://dx.doi.org/10.1063/1.3139006
128.
128. A. Kushima, X. Lin, J. Li, X. Qian, J. Eapen, J. C. Mauro, P. Diep, and S. Yip, J. Chem. Phys. 131, 164505 (2009).
http://dx.doi.org/10.1063/1.3243854
129.
129. J. Li, A. Kushima, J. Eapen, X. Lin, X. Qian, J. C. Mauro, P. Diep, and S. Yip, PLoS ONE 6, e17909 (2011).
http://dx.doi.org/10.1371/journal.pone.0017909
130.
130. A. Kushima, J. Eapen, J. Li, S. Yip, and T. Zhu, Eur. Phys. J. B 82, 271 (2011).
http://dx.doi.org/10.1140/epjb/e2011-20075-4
131.
131. F. Puosi and D. Leporini, J. Chem. Phys. 136, 041104 (2012).
http://dx.doi.org/10.1063/1.3681291
132.
132. S. Abraham and P. Harrowell, J. Chem. Phys. 137, 014506 (2012).
http://dx.doi.org/10.1063/1.4730912
133.
133. N. P. Bailey, T. B. Schroder, and J. C. Dyre, Phys. Rev. Lett. 102, 055701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.055701
134.
134. V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, and K. Trachenko, Phys. Rev. E 85, 031203 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.031203
135.
135. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.953
136.
136. K. S. Schweizer, J. Chem. Phys. 127, 164506 (2007).
http://dx.doi.org/10.1063/1.2780863
137.
137. J. C. Dyre and W. H. Wang, J. Chem. Phys. 136, 224108 (2012).
http://dx.doi.org/10.1063/1.4724102
138.
138. W. H. Wang, Prog. Mater. Sci. 57, 487 (2012).
http://dx.doi.org/10.1016/j.pmatsci.2011.07.001
139.
139. M. D. Demetriou, J. S. Harmon, M. Tao, G. Duan, K. Samwer, and W. L. Johnson, Phys. Rev. Lett. 97, 065502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.065502
140.
140. M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
http://dx.doi.org/10.1021/jp953538d
141.
141. L. Wu, P. K. Dixon, S. R. Nagel, B. D. Williams, and J. P. Carini, J. Non-Cryst. Solids 131, 32 (1991).
http://dx.doi.org/10.1016/0022-3093(91)90267-A
142.
142. S. F. Swallen and M. D. Ediger, Soft Matter 7, 10339 (2011).
http://dx.doi.org/10.1039/c1sm06283b
143.
143. F. Fujara, B. Geil, H. Sillescu, and G. Fleischer, Z. Phys. B: Condens. Matter 88, 195 (1992).
http://dx.doi.org/10.1007/BF01323572
144.
144. M. K. Mapes, S. F. Swallen, K. L. Kearns, and M. D. Ediger, J. Chem. Phys. 124, 054710 (2006).
http://dx.doi.org/10.1063/1.2139089
145.
145. S. F. Swallen, K. Traynor, R. J. McMahon, M. D. Ediger, and T. E. Mates, J. Phys. Chem. B 113, 4600 (2009).
http://dx.doi.org/10.1021/jp808912e
146.
146. R. S. Smith, J. Matthiesen, and B. D. Kay, J. Chem. Phys. 132, 124502 (2010).
http://dx.doi.org/10.1063/1.3361664
147.
147. C. Y. Wang and M. D. Ediger, Macromolecules 30, 4770 (1997).
http://dx.doi.org/10.1021/ma961907d
148.
148. S. K. Kumar, G. Szamel, and J. F. Douglas, J. Chem. Phys. 124, 214501 (2006).
http://dx.doi.org/10.1063/1.2192769
149.
149. S.-H. Chong and W. Kob, Phys. Rev. Lett. 102, 025702 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.025702
150.
150. L. Berthier, Phys. Rev. E 69, 020201 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.020201
151.
151. L. Berthier, D. Chandler, and J. P. Garrahan, Europhys. Lett. 69, 320 (2005).
http://dx.doi.org/10.1209/epl/i2004-10401-5
152.
152. K. S. Schweizer, Curr. Opin. Colloid Interface Sci. 12, 297 (2007).
http://dx.doi.org/10.1016/j.cocis.2007.07.013
153.
153. K. R. Harris, J. Chem. Phys. 132, 231103 (2010).
http://dx.doi.org/10.1063/1.3455342
154.
154. E. B. Moore and V. Molinero, Nature (London) 479, 506 (2011).
http://dx.doi.org/10.1038/nature10586
155.
155. A. P. Sokolov and K. S. Schweizer, Phys. Rev. Lett. 102, 248301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.248301
156.
156. A. Bartsch, K. Rätzke, A. Meyer, and F. Faupel, Phys. Rev. Lett. 104, 195901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.195901
157.
157. T. P. Lodge and T. C. B. McLeish, Macromolecules 33, 5278 (2000).
http://dx.doi.org/10.1021/ma9921706
158.
158. A. C. Genix, A. Arbe, F. Alvarez, J. Colmenero, L. Willner, and D. Richter, Phys. Rev. E 72, 031808 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.031808
159.
159. J. C. Haley, T. P. Lodge, Y. Y. He, M. D. Ediger, E. D. von Meerwall, and J. Mijovic, Macromolecules 36, 6142 (2003).
http://dx.doi.org/10.1021/ma034414z
160.
160. K. D. Vargheese, A. Tandia, and J. C. Mauro, J. Chem. Phys. 132, 194501 (2010).
http://dx.doi.org/10.1063/1.3429880
161.
161. S. A. Mackowiak, T. K. Herman, and L. J. Kaufman, J. Chem. Phys. 131, 244513 (2009).
http://dx.doi.org/10.1063/1.3277141
162.
162. S. A. Mackowiak, L. M. Leone, and L. J. Kaufman, Phys. Chem. Chem. Phys. 13, 1786 (2011).
http://dx.doi.org/10.1039/c0cp01860k
163.
163. R. Zondervan, F. Kulzer, G. C. G. Berkhout, and M. Orrit, Proc. Natl. Acad. Sci. U.S.A. 104, 12628 (2007).
http://dx.doi.org/10.1073/pnas.0610521104
164.
164. A. Schob, F. Cichos, J. Schuster, and C. von Borczyskowski, Eur. Polym. J. 40, 1019 (2004).
http://dx.doi.org/10.1016/j.eurpolymj.2004.01.016
165.
165. D. Bingemann, R. M. Allen, and S. W. Olesen, J. Chem. Phys. 134, 024513 (2011).
http://dx.doi.org/10.1063/1.3516516
166.
166. T. G. Lombardo, P. G. Debenedetti, and F. H. Stillinger, J. Chem. Phys. 125, 174507 (2006).
http://dx.doi.org/10.1063/1.2371111
167.
167. J. Qian, R. Hentschke, and A. Heuer, J. Chem. Phys. 110, 4514 (1999).
http://dx.doi.org/10.1063/1.478334
168.
168. A. Nowaczyk, B. Geil, G. Hinze, and R. Boehmer, Phys. Rev. E 74, 041505 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.041505
169.
169. C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. Phys. 68, 1405 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R03
170.
170. G. Tarjus, D. Kivelson, S. Mossa, and C. Alba-Simionesco, J. Chem. Phys. 120, 6135 (2004).
http://dx.doi.org/10.1063/1.1649732
171.
171. M. L. Ferrer, C. Lawrence, B. G. Demirjian, D. Kivelson, C. Alba-Simionesco, and G. Tarjus, J. Chem. Phys. 109, 8010 (1998).
http://dx.doi.org/10.1063/1.477448
172.
172. I. Avramov, J. Non-Cryst. Solids 262, 258 (2000).
http://dx.doi.org/10.1016/S0022-3093(99)00712-7
173.
173. R. Casalini, U. Mohanty, and C. M. Roland, J. Chem. Phys. 125, 014505 (2006).
http://dx.doi.org/10.1063/1.2206582
174.
174. A. Grzybowski, M. Paluch, K. Grzybowska, and S. Haracz, J. Chem. Phys. 133, 161101 (2010).
http://dx.doi.org/10.1063/1.3496999
175.
175. N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schroder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008).
http://dx.doi.org/10.1063/1.2982249
176.
176. N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schroder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
http://dx.doi.org/10.1063/1.2982247
177.
177. L. Guttman and S. M. Rahman, Phys. Rev. B 37, 2657 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2657
178.
178. D. A. Keen and M. T. Dove, J. Phys.: Condens. Matter 11, 9263 (1999).
http://dx.doi.org/10.1088/0953-8984/11/47/311
179.
179. G. N. Greaves and S. Sen, Adv. Phys. 56, 1 (2007).
http://dx.doi.org/10.1080/00018730601147426
180.
180. P. Boolchand, D. G. Georgiev, and M. Micoulaut, J. Optoelectron. Adv. Mater. 4, 823 (2002).
181.
181. M. M. J. Treacy and K. B. Borisenko, Science 335, 950 (2012).
http://dx.doi.org/10.1126/science.1214780
182.
182. J. Hwang, Z. H. Melgarejo, Y. E. Kalaly, I. Kalay, M. J. Kramer, D. S. Stone, and P. M. Volyes, Phys. Rev. Lett. 108, 195505 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.195505
183.
183. P. Biswas, D. N. Tafen, F. Inam, B. Cai, and D. A. Drabold, J. Phys.: Condens. Matter 21, 084207 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084207
184.
184. Y. Q. Cheng and E. Ma, Prog. Mater Sci. 56, 379 (2011).
http://dx.doi.org/10.1016/j.pmatsci.2010.12.002
185.
185. P. H. Gaskell, Acta Metall. 29, 1203 (1981).
http://dx.doi.org/10.1016/0001-6160(81)90011-0
186.
186. F. Spaepen and D. Turnbull, Annu. Rev. Phys. Chem. 35, 241 (1984).
http://dx.doi.org/10.1146/annurev.pc.35.100184.001325
187.
187. P. H. Gaskell, Nature (London) 276, 484 (1978).
http://dx.doi.org/10.1038/276484a0
188.
188. C. Hausleitner and J. Hafner, Phys. Rev. B 47, 5689 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.5689
189.
189. P. F. Guan, T. Fujita, A. Hirata, Y. H. Liu, and M. W. Chen, Phys. Rev. Lett. 108, 175501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.175501
190.
190. W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.4626
191.
191. F. C. Frank and J. S. Kasper, Acta Crystallogr. 11, 184 (1958).
http://dx.doi.org/10.1107/S0365110X58000487
192.
192. G. Tarjus, S. A. Kivelson, Z. Nussinov, and P. Viot, J. Phys.: Condens. Matter 17, R1143 (2005).
http://dx.doi.org/10.1088/0953-8984/17/50/R01
193.
193. A. Cavagna, T. S. Grigera, and P. Verrocchio, Phys. Rev. Lett. 98, 187801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.187801
194.
194. A. Cavagna, T. S. Grigera, and P. Verrocchio, J. Stat. Mech.: Theory Exp. P10001 (2010).
http://dx.doi.org/10.1088/1742-5468/2010/10/P10001
195.
195. J. P. Bouchaud and G. Biroli, J. Chem. Phys. 121, 7347 (2004).
http://dx.doi.org/10.1063/1.1796231
196.
196. M. Dzero, J. Schmalian, and P. G. Wolynes, Phys. Rev. B 72, 100201 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.100201
197.
197. G. Biroli, J. P. Bouchaud, A. Cavagna, T. S. Grigera, and P. Verrocchio, Nat. Phys. 4, 771 (2008).
http://dx.doi.org/10.1038/nphys1050
198.
198. Y. Q. Cheng, H. W. Sheng, and E. Ma, Phys. Rev. B 78, 014207 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.014207
199.
199. T. Kawasaki and H. Tanaka, J. Phys.: Condens. Matter 22, 232102 (2010).
http://dx.doi.org/10.1088/0953-8984/22/23/232102
200.
200. U. R. Pedersen, T. S. Hudson, and P. Harrowell, J. Chem. Phys. 134, 114501 (2011).
http://dx.doi.org/10.1063/1.3559153
201.
201. S. Toxvaerd, U. R. Pedersen, T. B. Schroder, and J. C. Dyre, J. Chem. Phys. 130, 224501 (2009).
http://dx.doi.org/10.1063/1.3144049
202.
202. G.-Q. Guo, L. Yang, C.-L. Huang, D. Chen, and L.-Y. Chen, J. Mater. Res. 26, 2098 (2011).
203.
203. P. Ronceray and P. Harrowell, EPL 96, 36005 (2011).
http://dx.doi.org/10.1209/0295-5075/96/36005
204.
204. P. Ronceray and P. Harrowell, J. Chem. Phys. 136, 134504 (2012).
http://dx.doi.org/10.1063/1.3701617
205.
205. A. Widmer-Cooper and P. Harrowell, J. Chem. Phys. 135, 224515 (2011).
http://dx.doi.org/10.1063/1.3666010
206.
206. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature (London) 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
207.
207. O. Mishima and H. E. Stanley, Nature (London) 392, 164 (1998).
http://dx.doi.org/10.1038/32386
208.
208. S. V. Buldyrev, G. Malescio, C. A. Angell, N. Giovambattista, S. Prestipino, F. Saija, H. E. Stanley, and L. Xu, J. Phys.: Condens. Matter 21, 504106 (2009).
http://dx.doi.org/10.1088/0953-8984/21/50/504106
209.
209. P. G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).
http://dx.doi.org/10.1088/0953-8984/15/45/R01
210.
210. D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
211.
211. P. H. Poole, S. R. Becker, F. Sciortino, and F. W. Starr, J. Phys. Chem. B 115, 14176 (2011).
http://dx.doi.org/10.1021/jp204889m
212.
212. F. Sciortino, I. Saika-Voivod, and P. H. Poole, Phys. Chem. Chem. Phys. 13, 19759 (2011).
http://dx.doi.org/10.1039/c1cp22316j
213.
213. T. A. Kesselring, G. Franzese, S. V. Buldyrev, H. J. Herrmann, and H. E. Stanley, Sci. Rep. 2, 474 (2012).
http://dx.doi.org/10.1038/srep00474
214.
214. Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 131, 104508 (2009).
http://dx.doi.org/10.1063/1.3229892
215.
215. W. Ping, D. Paraska, R. Baker, P. Harrowell, and C. A. Angell, J. Phys. Chem. B 115, 4696 (2011).
http://dx.doi.org/10.1021/jp110975y
216.
216. J. F. Loffler, J. Schroers, and W. L. Johnson, Appl. Phys. Lett. 77, 681 (2000).
http://dx.doi.org/10.1063/1.127084
217.
217. O. Lebel, T. Maris, M.-E. Perron, E. Demers, and J. D. Wuest, J. Am. Chem. Soc. 128, 10372 (2006).
http://dx.doi.org/10.1021/ja063353s
218.
218. L. Yu, Adv. Drug Delivery Rev. 48, 27 (2001).
http://dx.doi.org/10.1016/S0169-409X(01)00098-9
219.
219. B. C. Hancock and M. Parks, Pharm. Res. 17, 397 (2000).
http://dx.doi.org/10.1023/A:1007516718048
220.
220. J. H. Perepezko and R. J. Hebert, JOM 54, 34 (2002).
http://dx.doi.org/10.1007/BF02822618
221.
221. M. L. F. Nascimento and E. D. Zanotto, J. Chem. Phys. 133, 174701 (2010).
http://dx.doi.org/10.1063/1.3490793
222.
222. M. D. Ediger, P. Harrowell, and L. Yu, J. Chem. Phys. 128, 034709 (2008).
http://dx.doi.org/10.1063/1.2815325
223.
223. J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, Nature Mater. 11, 279 (2012).
http://dx.doi.org/10.1038/nmat3275
224.
224. T. Hikima, Y. Adachi, M. Hanaya, and M. Oguni, Phys. Rev. B 52, 3900 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.3900
225.
225. M. Hatase, M. Hanaya, T. Hikima, and M. Oguni, J. Non-Cryst. Solids 307, 257 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01473-4
226.
226. T. Konishi and H. Tanaka, Phys. Rev. B 76, 220201 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.220201
227.
227. Y. Sun, H. M. Xi, S. Chen, M. D. Ediger, and L. Yu, J. Phys. Chem. B 112, 5594 (2008).
http://dx.doi.org/10.1021/jp7120577
228.
228. Y. Sun, H. M. Xi, M. D. Ediger, R. Richert, and L. Yu, J. Chem. Phys. 131, 074506 (2009).
http://dx.doi.org/10.1063/1.3200228
229.
229. U. Koster and J. Meinhardt, Mater. Sci. Eng., A 178, 271 (1994).
http://dx.doi.org/10.1016/0921-5093(94)90553-3
230.
230. E. Sanz, C. Valeriani, E. Zaccarelli, W. C. K. Poon, P. N. Pusey, and M. E. Cates, Phys. Rev. Lett. 106, 215701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.215701
231.
231. J. A. Forrest and K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).
http://dx.doi.org/10.1016/S0001-8686(01)00060-4
232.
232. J. L. Keddie, R. A. L. Jones, and R. A. Cory, Europhys. Lett. 27, 59 (1994).
http://dx.doi.org/10.1209/0295-5075/27/1/011
233.
233. M. Y. Efremov, E. A. Olson, M. Zhang, Z. Zhang, and L. H. Allen, Phys. Rev. Lett. 91, 085703 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.085703
234.
234. M. Tress, M. Erber, E. U. Mapesa, H. Huth, J. Mueller, A. Serghei, C. Schick, K.-J. Eichhorn, B. Volt, and F. Kremer, Macromolecules 43, 9937 (2010).
http://dx.doi.org/10.1021/ma102031k
235.
235. M. Alcoutlabi and G. B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005).
http://dx.doi.org/10.1088/0953-8984/17/15/R01
236.
236. Z. Yang, Y. Fujii, F. K. Lee, C.-H. Lam, and O. K. C. Tsui, Science 328, 1676 (2010).
http://dx.doi.org/10.1126/science.1184394
237.
237. C. B. Roth, K. L. McNerny, W. F. Jager, and J. M. Torkelson, Macromolecules 40, 2568 (2007).
http://dx.doi.org/10.1021/ma062864w
238.
238. J. H. vanZanten, W. E. Wallace, and W. L. Wu, Phys. Rev. E 53, R2053 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.R2053
239.
239. C. H. Park, J. H. Kim, M. Ree, B. H. Sohn, J. C. Jung, and W. C. Zin, Polymer 45, 4507 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.04.048
240.
240. D. S. Fryer, P. F. Nealey, and J. J. de Pablo, Macromolecules 33, 6439 (2000).
http://dx.doi.org/10.1021/ma0003349
241.
241. X. Q. Jiang, C. Z. Yang, K. Tanaka, A. Takahara, and T. Kajiyama, Phys. Lett. A 281, 363 (2001).
http://dx.doi.org/10.1016/S0375-9601(01)00150-5
242.
242. M. K. Mundra, C. J. Ellison, R. E. Behling, and J. M. Torkelson, Polymer 47, 7747 (2006).
http://dx.doi.org/10.1016/j.polymer.2006.08.064
243.
243. K. Dalnoki-Veress, J. A. Forrest, C. Murray, C. Gigault, and J. R. Dutcher, Phys. Rev. E 63, 031801 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.031801
244.
244. S. Kim, C. B. Roth, and J. M. Torkelson, J. Polym. Sci., Pol. Phys. Ed. 46, 2754 (2008).
http://dx.doi.org/10.1002/polb.21591
245.
245. P. A. O’Connell and G. B. McKenna, Science 307, 1760 (2005).
http://dx.doi.org/10.1126/science.1105658
246.
246. P. A. O’Connell, J. Wang, T. A. Ishola, and G. B. McKenna, Macromolecules 45, 2453 (2012).
http://dx.doi.org/10.1021/ma300098h
247.
247. J. E. Pye and C. B. Roth, Phys. Rev. Lett. 107, 235701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.235701
248.
248. Y. Huang and D. R. Paul, Ind. Eng. Chem. Res. 46, 2342 (2007).
http://dx.doi.org/10.1021/ie0610804
249.
249. P. Rittigstein, R. D. Priestley, L. J. Broadbelt, and J. M. Torkelson, Nature Mater. 6, 278 (2007).
http://dx.doi.org/10.1038/nmat1870
250.
250. P. Gasemjit and D. Johannsmann, J. Polym. Sci., Pol. Phys. Ed. 44, 3031 (2006).
http://dx.doi.org/10.1002/polb.20922
251.
251. T. Kerle, Z. Q. Lin, H. C. Kim, and T. P. Russell, Macromolecules 34, 3484 (2001).
http://dx.doi.org/10.1021/ma0020335
252.
252. A. D. Schwab, D. M. G. Agra, J. H. Kim, S. Kumar, and A. Dhinojwala, Macromolecules 33, 4903 (2000).
http://dx.doi.org/10.1021/ma9919514
253.
253. Z. Fakhraai and J. A. Forrest, Science 319, 600 (2008).
http://dx.doi.org/10.1126/science.1151205
254.
254. D. Qi, M. Ilton, and J. A. Forrest, Eur. Phys. J. E 34, 56 (2011).
http://dx.doi.org/10.1140/epje/i2011-11056-1
255.
255. K. Paeng and M. D. Ediger, Macromolecules 44, 7034 (2011).
http://dx.doi.org/10.1021/ma201266r
256.
256. K. Paeng, S. F. Swallen, and M. D. Ediger, J. Am. Chem. Soc. 133, 8444 (2011).
http://dx.doi.org/10.1021/ja2022834
257.
257. C. J. Ellison and J. M. Torkelson, Nature Mater. 2, 695 (2003).
http://dx.doi.org/10.1038/nmat980
258.
258. S. Kim and J. M. Torkelson, Macromolecules 44, 4546 (2011).
http://dx.doi.org/10.1021/ma200617j
259.
259. R. Richert and M. Yang, J. Phys. Chem. B 107, 895 (2003).
http://dx.doi.org/10.1021/jp022039r
260.
260. R. C. Bell, H. F. Wang, M. J. Iedema, and J. P. Cowin, J. Am. Chem. Soc. 125, 5176 (2003).
http://dx.doi.org/10.1021/ja0291437
261.
261. S. F. Swallen, K. L. Kearns, M. K. Mapes, Y. S. Kim, R. J. McMahon, M. D. Ediger, T. Wu, L. Yu, and S. Satija, Science 315, 353 (2007).
http://dx.doi.org/10.1126/science.1135795
262.
262. L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Phys. Rev. Lett. 106, 256103 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.256103
263.
263. J. D. Stevenson and P. G. Wolynes, J. Chem. Phys. 129, 234514 (2008).
http://dx.doi.org/10.1063/1.3041651
264.
264. Y. Sun, L. Zhu, K. L. Kearns, M. D. Ediger, and L. Yu, Proc. Natl. Acad. Sci. U.S.A. 108, 5990 (2011).
http://dx.doi.org/10.1073/pnas.1017995108
265.
265. J. Baschnagel and F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).
http://dx.doi.org/10.1088/0953-8984/17/32/R02
266.
266. J.-L. Barrat, J. Baschnagel, and A. Lyulin, Soft Matter 6, 3430 (2010).
http://dx.doi.org/10.1039/b927044b
267.
267. K. Yoshimoto, T. S. Jain, P. F. Nealey, and J. J. de Pablo, J. Chem. Phys. 122, 144712 (2005).
http://dx.doi.org/10.1063/1.1873732
268.
268. P. Scheidler, W. Kob, and K. Binder, Europhys. Lett. 59, 701 (2002).
http://dx.doi.org/10.1209/epl/i2002-00182-9
269.
269. Z. Shi, P. G. Debenedetti, and F. H. Stillinger, J. Chem. Phys. 134, 114524 (2011).
http://dx.doi.org/10.1063/1.3565480
270.
270. V. V. Hoang and T. Q. Dong, Phys. Rev. B 84, 174204 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.174204
271.
271. S. Ramos, M. Oguni, K. Ishii, and H. Nakayama, J. Phys. Chem. B 115, 14327 (2011).
http://dx.doi.org/10.1021/jp203612s
272.
272. E. Leon-Gutierrez, A. Sepúlveda, G. Garcia, M. T. Clavaguera-Mora, and J. Rodríguez-Viejo, Phys. Chem. Chem. Phys. 12, 14693 (2010).
http://dx.doi.org/10.1039/c0cp00208a
273.
273. L. Zhu and L. Yu, Chem. Phys. Lett. 499, 62 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.09.010
274.
274. K. L. Kearns, S. F. Swallen, M. D. Ediger, T. Wu, Y. Sun, and L. Yu, J. Phys. Chem. B 112, 4934 (2008).
http://dx.doi.org/10.1021/jp7113384
275.
275. S. Dalal, A. Sepulveda-Marquez, G. Pribil, Z. Fakhraai, and M. D. Ediger, J. Chem. Phys. 136, 204501 (2012).
http://dx.doi.org/10.1063/1.4719532
276.
276. K. L. Kearns, K. R. Whitaker, M. D. Ediger, H. Huth, and C. Schick, J. Chem. Phys. 133, 014702 (2010).
http://dx.doi.org/10.1063/1.3442416
277.
277. S. F. Swallen, K. Traynor, R. J. McMahon, M. D. Ediger, and T. E. Mates, Phys. Rev. Lett. 102, 065503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.065503
278.
278. S. Leonard and P. Harrowell, J. Chem. Phys. 133, 244502 (2010).
http://dx.doi.org/10.1063/1.3511721
279.
279. P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 106, 1353 (2009).
http://dx.doi.org/10.1073/pnas.0909421106
280.
280. S. Singh, and J. J. de Pablo, J. Chem. Phys. 134, 194903 (2011).
http://dx.doi.org/10.1063/1.3586805
281.
281. R. L. Jack, L. O. Hedges, J. P. Garrahan, and D. Chandler, Phys. Rev. Lett. 107, 275702 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.275702
282.
282. F. Pfeiffer, N. M. Felix, C. Neuber, C. K. Ober, and H.-W. Schmidt, Adv. Funct. Mater. 17, 2336 (2007).
http://dx.doi.org/10.1002/adfm.200600717
283.
283. S. Dalal and M. D. Ediger, J. Phys. Chem. Lett. 3, 1229 (2012).
http://dx.doi.org/10.1021/jz3003266
284.
284. D. Yokoyama, Y. Setoguchi, A. Sakaguchi, M. Suzuki, and C. Adachi, Adv. Funct. Mater. 20, 386 (2010).
http://dx.doi.org/10.1002/adfm.200901684
285.
285. S. F. Swallen, K. Windsor, R. J. McMahon, M. D. Ediger, and T. E. Mates, J. Phys. Chem. B 114, 2635 (2010).
http://dx.doi.org/10.1021/jp9107359
286.
286. L. Wondraczek, J. C. Mauro, J. Eckert, U. Kuehn, J. Horbach, J. Deubener, and T. Rouxel, Adv. Mater. 23, 4578 (2011).
http://dx.doi.org/10.1002/adma.201102795
287.
287. I. M. Weiss, N. Tuross, L. Addadi, and S. Weiner, J. Exp. Zool. 293, 478 (2002).
http://dx.doi.org/10.1002/jez.90004
288.
288. Y. Politi, R. A. Metzler, M. Abrecht, B. Gilbert, F. H. Wilt, I. Sagi, L. Addadi, S. Weiner, and P. U. P. A. Gilbert, Proc. Natl. Acad. Sci. U.S.A. 105, 17362 (2008).
http://dx.doi.org/10.1073/pnas.0806604105
289.
289. J. Goyon, A. Colin, and L. Bocquet, Soft Matter 6, 2668 (2010).
http://dx.doi.org/10.1039/c001930e
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/8/10.1063/1.4747326
Loading
/content/aip/journal/jcp/137/8/10.1063/1.4747326
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/137/8/10.1063/1.4747326
2012-08-23
2014-10-20

Abstract

Supercooled liquids and glasses are important for current and developing technologies. Here we provide perspective on recent progress in this field. The interpretation of supercooled liquid and glassproperties in terms of the potential energy landscape is discussed. We explore the connections between amorphousstructure, high frequency motions, molecular motion, structural relaxation, stability against crystallization, and material properties. Recent developments that may lead to new materials or new applications of existing materials are described.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/137/8/1.4747326.html;jsessionid=6ifbdn1bo7s41.x-aip-live-06?itemId=/content/aip/journal/jcp/137/8/10.1063/1.4747326&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: Supercooled liquids and glasses
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/8/10.1063/1.4747326
10.1063/1.4747326
SEARCH_EXPAND_ITEM