Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Hobza and K. Muller-Dethlefs, Non-Covalent Interactions (Royal Society of Chemistry, Cambridge, 2009).
2. E. Arunan, G. R. Desiraju, R. A Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, and D. J. Nesbitt, Pure Appl. Chem. 83, 1619 (2011).
3. S. Scheiner, Hydrogen Bonding: A Theoretical Perspective (Oxford University Press, New York, 1997).
4. C. Perez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, and B. H. Pate, Science 336, 897 (2012).
5. C. Trindle and Y. J. Ilhan, J. Chem. Theory Comput. 4, 533 (2008).
6. S. T. Shipman, P. C. Douglass, H. S. Yoo, C. E. Hinkle, E. L. Mierzejewski, and B. H. Pate, Phys. Chem. Chem. Phys. 9, 4572 (2007).
7. G. M. Florio, T. S. Zwier, E. M. Myshakin, K. D. Jordan, and E. L. Sibert, J. Chem. Phys. 118, 1735 (2003).
8. P. Hobza and Z. Havlas, Chem. Rev. 100, 4253 (2000).
9. X. S. Li, L. Liu, and H. B. Schlegel, J. Am. Chem. Soc. 124, 9639 (2002).
10. J. Joseph and E. D. Jemmis, J. Am. Chem. Soc. 129, 4620 (2007).
11. D. K. Havey, K. J. Feierabend, and V. Vaida, J. Phys. Chem. A 108, 9069 (2004).
12. B. A. Sexton, Surf. Sci. 88, 299 (1979);
12.Y. J. Hu, H. B. Fu, and E. R. Bernstein, J. Chem. Phys. 125, 154305 (2006).
13. Y. J. Hu, H. B. Fu, and E. R. Bernstein, J. Chem. Phys. 125, 154306 (2006).
14. J. D. Pitts and J. L. Knee, J. Chem. Phys. 108, 9632 (1998).
15. Q. Gu and J. L. Knee, J. Chem. Phys. 136, 171101 (2012).
16. S. Basu and J. L. Knee, J. Chem. Phys. 120, 5631 (2004).
17. M. J. T. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
18. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83 735 (1985);
18.the latest version of the program is NBO 5.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison (2001). Gaussian includes a previous version.
19. F. Weinhold and R. A. Klein, Mol. Phys. 110, 565 (2012).
20. A. V. Fedorov and J. R. Cable, J. Phys. Chem. A. 104, 4943 (2000).
21. B. O. Crews, A. Abo-Riziq, K. Pluhackova, P. Thompson, G. Hill, P. Hobza, and M. S. deVries, Phys. Chem. Chem. Phys. 12, 3597 (2010).
22. N. S. Nagornova, T. R. Rizzo, and O. V. Boyarkin, Science 336, 320 (2012).

Data & Media loading...


Article metrics loading...



Infrared-ultraviolet double resonance spectroscopy has been applied to study the infrared spectra of the supersonically cooled gas phase complexes of formic acid, acetic acid, propionic acid, formamide, and water with 9-hydroxy-9-fluorenecarboxylic acid (9HFCA), an analog of glycolic acid. In these complexes each binding partner to 9HFCA can function as both proton donor and acceptor. Relative to its frequency in free 9HFCA, the 9-hydroxy (9OH) stretch is blue shifted in complexes with formic, acetic, and propionic acids, but is red shifted in the complexes with formamide and water.Density functional calculations on complexes of 9HFCA to a variety of H bonding partners with differing proton donor and acceptor abilities reveal that the quantitative frequency shift of the 9OH can be attributed to the balance struck between two competing intermolecular H bonds. More extensive calculations on complexes of glycolic acid show excellent consistency with the experimental frequency shifts.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd