1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Frequency shifts of an intramolecular hydrogen bond as a measure of intermolecular hydrogen bond strengths
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/137/9/10.1063/1.4752246
1.
1. P. Hobza and K. Muller-Dethlefs, Non-Covalent Interactions (Royal Society of Chemistry, Cambridge, 2009).
2.
2. E. Arunan, G. R. Desiraju, R. A Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, and D. J. Nesbitt, Pure Appl. Chem. 83, 1619 (2011).
http://dx.doi.org/10.1351/PAC-REP-10-01-01
3.
3. S. Scheiner, Hydrogen Bonding: A Theoretical Perspective (Oxford University Press, New York, 1997).
4.
4. C. Perez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, and B. H. Pate, Science 336, 897 (2012).
http://dx.doi.org/10.1126/science.1220574
5.
5. C. Trindle and Y. J. Ilhan, J. Chem. Theory Comput. 4, 533 (2008).
http://dx.doi.org/10.1021/ct700161a
6.
6. S. T. Shipman, P. C. Douglass, H. S. Yoo, C. E. Hinkle, E. L. Mierzejewski, and B. H. Pate, Phys. Chem. Chem. Phys. 9, 4572 (2007).
http://dx.doi.org/10.1039/b704900e
7.
7. G. M. Florio, T. S. Zwier, E. M. Myshakin, K. D. Jordan, and E. L. Sibert, J. Chem. Phys. 118, 1735 (2003).
http://dx.doi.org/10.1063/1.1530573
8.
8. P. Hobza and Z. Havlas, Chem. Rev. 100, 4253 (2000).
http://dx.doi.org/10.1021/cr990050q
9.
9. X. S. Li, L. Liu, and H. B. Schlegel, J. Am. Chem. Soc. 124, 9639 (2002).
http://dx.doi.org/10.1021/ja020213j
10.
10. J. Joseph and E. D. Jemmis, J. Am. Chem. Soc. 129, 4620 (2007).
http://dx.doi.org/10.1021/ja067545z
11.
11. D. K. Havey, K. J. Feierabend, and V. Vaida, J. Phys. Chem. A 108, 9069 (2004).
http://dx.doi.org/10.1021/jp0474881
12.
12. B. A. Sexton, Surf. Sci. 88, 299 (1979);
http://dx.doi.org/10.1016/0039-6028(79)90077-3
12.Y. J. Hu, H. B. Fu, and E. R. Bernstein, J. Chem. Phys. 125, 154305 (2006).
http://dx.doi.org/10.1063/1.2357952
13.
13. Y. J. Hu, H. B. Fu, and E. R. Bernstein, J. Chem. Phys. 125, 154306 (2006).
http://dx.doi.org/10.1063/1.2357953
14.
14. J. D. Pitts and J. L. Knee, J. Chem. Phys. 108, 9632 (1998).
http://dx.doi.org/10.1063/1.476439
15.
15. Q. Gu and J. L. Knee, J. Chem. Phys. 136, 171101 (2012).
http://dx.doi.org/10.1063/1.4711862
16.
16. S. Basu and J. L. Knee, J. Chem. Phys. 120, 5631 (2004).
http://dx.doi.org/10.1063/1.1648304
17.
17. M. J. T. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
18.
18. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83 735 (1985);
http://dx.doi.org/10.1063/1.449486
18.the latest version of the program is NBO 5.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison (2001). Gaussian includes a previous version.
19.
19. F. Weinhold and R. A. Klein, Mol. Phys. 110, 565 (2012).
http://dx.doi.org/10.1080/00268976.2012.661478
20.
20. A. V. Fedorov and J. R. Cable, J. Phys. Chem. A. 104, 4943 (2000).
http://dx.doi.org/10.1021/jp994449u
21.
21. B. O. Crews, A. Abo-Riziq, K. Pluhackova, P. Thompson, G. Hill, P. Hobza, and M. S. deVries, Phys. Chem. Chem. Phys. 12, 3597 (2010).
http://dx.doi.org/10.1039/b925340h
22.
22. N. S. Nagornova, T. R. Rizzo, and O. V. Boyarkin, Science 336, 320 (2012).
http://dx.doi.org/10.1126/science.1218709
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/9/10.1063/1.4752246
Loading
/content/aip/journal/jcp/137/9/10.1063/1.4752246
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/137/9/10.1063/1.4752246
2012-09-07
2014-12-20

Abstract

Infrared-ultraviolet double resonance spectroscopy has been applied to study the infrared spectra of the supersonically cooled gas phase complexes of formic acid, acetic acid, propionic acid, formamide, and water with 9-hydroxy-9-fluorenecarboxylic acid (9HFCA), an analog of glycolic acid. In these complexes each binding partner to 9HFCA can function as both proton donor and acceptor. Relative to its frequency in free 9HFCA, the 9-hydroxy (9OH) stretch is blue shifted in complexes with formic, acetic, and propionic acids, but is red shifted in the complexes with formamide and water.Density functional calculations on complexes of 9HFCA to a variety of H bonding partners with differing proton donor and acceptor abilities reveal that the quantitative frequency shift of the 9OH can be attributed to the balance struck between two competing intermolecular H bonds. More extensive calculations on complexes of glycolic acid show excellent consistency with the experimental frequency shifts.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/137/9/1.4752246.html;jsessionid=19kcjygnnpi22.x-aip-live-02?itemId=/content/aip/journal/jcp/137/9/10.1063/1.4752246&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Frequency shifts of an intramolecular hydrogen bond as a measure of intermolecular hydrogen bond strengths
http://aip.metastore.ingenta.com/content/aip/journal/jcp/137/9/10.1063/1.4752246
10.1063/1.4752246
SEARCH_EXPAND_ITEM