1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Hydration structure of salt solutions from ab initio molecular dynamics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/1/10.1063/1.4772761
1.
1. H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).
http://dx.doi.org/10.1021/cr00019a014
2.
2. Y. Marcus, Chem. Rev. 109, 1346 (2009).
http://dx.doi.org/10.1021/cr8003828
3.
3. D. M. Rogers, D. Jiao, L. R. Pratt, and S. B. Rempe, Annu. Rep. Comp. Chem. 8, 71 (2012).
http://dx.doi.org/10.1016/B978-0-444-59440-2.00004-1
4.
4. I. Restrepo-Angulo, A. D. Vizcaya-Ruiz, and J. Camacho, J. Appl. Toxicol. 30, 497 (2010).
http://dx.doi.org/10.1002/jat.1556
5.
5. O. S. Andersen, J. Gen. Physiol. 137, 393 (2011).
http://dx.doi.org/10.1085/jgp.201110651
6.
6. A. Alam and Y. Jiang, J. Gen. Physiol. 137, 397 (2011).
http://dx.doi.org/10.1085/jgp.201010546
7.
7. C. M. Nimigean and T. W. Allen, J. Gen. Physiol. 137, 405 (2011).
http://dx.doi.org/10.1085/jgp.201010551
8.
8. B. Roux, S. Bernéche, B. Egwolf, B. Lev, S. Y. Noskov, C. N. Rowley, and H. Yu, J. Gen. Physiol. 137, 415 (2011).
http://dx.doi.org/10.1085/jgp.201010577
9.
9. P. D. Dixit and D. Asthagiri, J. Gen. Physiol. 137, 427 (2011).
http://dx.doi.org/10.1085/jgp.201010533
10.
10. J. Payandeh, T. Scheuer, N. Zheng, and W. A. Catterall, Nature (London) 475, 353 (2011).
http://dx.doi.org/10.1038/nature10238
11.
11. R. Horn, Nature (London) 475, 305 (2011).
http://dx.doi.org/10.1038/475305a
12.
12. O. Beckstein, K. Tai, and M. S. P. Sansom, J. Am. Chem. Soc. 126, 14694 (2004).
http://dx.doi.org/10.1021/ja045271e
13.
13. D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon, Science 280, 69 (1998).
http://dx.doi.org/10.1126/science.280.5360.69
14.
14. M. Zhou and R. MacKinnon, J. Mol. Biol. 338, 839 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.03.020
15.
15. Y. Zhou and R. MacKinnon, J. Mol. Biol. 333, 965 (2003).
http://dx.doi.org/10.1016/j.jmb.2003.09.022
16.
16. K. Neupert-Laves and M. Dobler, Helv. Chim. Acta 58, 432 (1975).
http://dx.doi.org/10.1002/hlca.19750580212
17.
17. Y. Zhou, J. H. Morais-Cabral, A. Kaufman, and R. MacKinnon, Nature (London) 414, 43 (2001).
http://dx.doi.org/10.1038/35102009
18.
18. D. J. Benos, Am. J. Physiol. Cell. Physiol. 242, C131 (1982); available at http://ajpcell.physiology.org/content/242/3/C131.full.
19.
19. L. G. Palmer, J. Membr. Biol. 67, 91 (1982).
http://dx.doi.org/10.1007/BF01868651
20.
20. V. Carnevale, W. Treptow, and Michael L. Klein, J. Phys. Chem. Lett. 2, 2504 (2011).
http://dx.doi.org/10.1021/jz2011379
21.
21. G. Beurskens and G. A. Jeffrey, J. Chem. Phys. 41, 924 (1964).
http://dx.doi.org/10.1063/1.1726034
22.
22. G. Beurskens and G. A. Jeffrey, J. Chem. Phys. 41, 917 (1964).
http://dx.doi.org/10.1063/1.1726033
23.
23. N. T. Skipper and G. W. Neilson, J. Phys.: Condens. Matter 1, 4141 (1989).
http://dx.doi.org/10.1088/0953-8984/1/26/010
24.
24. G. W. Neilson, P. E. Mason, S. Ramos, and D. Sullivan, Philos. Trans. R. Soc. London, Ser. A 359, 1575 (2001).
http://dx.doi.org/10.1098/rsta.2001.0866
25.
25. S. E. McLain, S. Imberti, A. K. Soper, A. Botti, F. Bruni, and M. A. Ricci, Phys. Rev. B 74, 094201 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.094201
26.
26. S. Ansell, A. C. Barnes, P. E. Mason, G. W. Neilson, and S. Ramos, Biophys. Chem. 124, 171 (2006).
http://dx.doi.org/10.1016/j.bpc.2006.04.018
27.
27. T. Megyes, S. Bálint, T. Grósz, T. Radnai, I. Bakó, and P. Sipos, J. Chem. Phys. 128, 044501 (2008).
http://dx.doi.org/10.1063/1.2821956
28.
28. J. Mähler and I. Persson, Inorg. Chem. 51, 425 (2012).
http://dx.doi.org/10.1021/ic2018693
29.
29. G. W. Neilson and N. Skipper, Chem. Phys. Lett. 114, 35 (1984).
http://dx.doi.org/10.1016/0009-2614(85)85050-8
30.
30. A. K. Soper and K. Weckström, Biophys. Chem. 124, 180 (2006).
http://dx.doi.org/10.1016/j.bpc.2006.04.009
31.
31. V. A. Glezakou, Y. Chen, J. L. Fulton, G. K. Schenter, and L. X. Dang, Theor. Chem. Acc. 115, 86 (2006).
http://dx.doi.org/10.1007/s00214-005-0054-4
32.
32. R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, J. Phys. Chem. B 111, 13570 (2007).
http://dx.doi.org/10.1021/jp075913v
33.
33. M. Mezei and D. L. Beveridge, J. Chem. Phys. 74, 6902 (1981).
http://dx.doi.org/10.1063/1.441101
34.
34. S. H. Lee and J. C. Rasaiah, J. Chem. Phys. 101, 6964 (1994).
http://dx.doi.org/10.1063/1.468323
35.
35. M. Carrillo-Tripp, H. Saint-Martin, and I. Ortega-Blake, J. Chem. Phys. 118, 7062 (2003).
http://dx.doi.org/10.1063/1.1559673
36.
36. S. Varma and S. B. Rempe, Biophys. Chem. 124, 192 (2006).
http://dx.doi.org/10.1016/j.bpc.2006.07.002
37.
37. S. S. Azam, Z. Haq, and M. Q. Fatmi, J. Mol. Liq. 153, 95 (2010).
http://dx.doi.org/10.1016/j.molliq.2010.01.005
38.
38. A. Tongraar, K. R. Liedl, and B. M. Rode, J. Phys. Chem. A 102, 10340 (1998).
http://dx.doi.org/10.1021/jp982270y
39.
39. S. B. Rempe and L. R. Pratt, Fluid Phase Equilib. 183, 121 (2001).
http://dx.doi.org/10.1016/S0378-3812(01)00426-5
40.
40. M. Cavallari, C. Cavazzoni, and M. Ferrario, Mol. Phys. 102, 959 (2004).
http://dx.doi.org/10.1080/00268970410001711904
41.
41. J. A. White, E. Schwegler, G. Galli, and F. Gygi, J. Chem. Phys. 113, 4668 (2000).
http://dx.doi.org/10.1063/1.1288688
42.
42. T. Ikeda, M. Boero, and K. Terakura, J. Chem. Phys. 126, 034501 (2007).
http://dx.doi.org/10.1063/1.2424710
43.
43. H. J. Kulik, N. Marzari, A. A. Correa, D. Prendergast, E. Schwegler, and G. Galli, J. Phys. Chem. B 114, 9594 (2010).
http://dx.doi.org/10.1021/jp103526y
44.
44. D. Bucher, L. Guidoni, P. Carloni, and U. Rothlisberger, Biophys. J. 98, L47 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.01.064
45.
45. C. N. Rowley and B. Roux, J. Chem. Theory Comput. 8, 3526 (2012).
http://dx.doi.org/10.1021/ct300091w
46.
46. L. M. Ramaniah, M. Bernasconi, and M. Parrinello, J. Chem. Phys. 111, 1587 (1999).
http://dx.doi.org/10.1063/1.479418
47.
47. S. B. Rempe, D. Asthagiri, and L. R. Pratt, Phys. Chem. Chem. Phys. 6, 1966 (2004).
http://dx.doi.org/10.1039/b313756b
48.
48. T. W. Whitfield, S. Varma, E. Harder, G. Lamoureux, S. B. Rempe, and B. Roux, J. Chem. Theory Comput. 3, 2068 (2007).
http://dx.doi.org/10.1021/ct700172b
49.
49. Y. Liu, H. Lu, Y. Wu, T. Hu, and Q. Li, J. Chem. Phys. 132, 124503 (2010).
http://dx.doi.org/10.1063/1.3369624
50.
50. S. Cummings, J. E. Enderby, G. W. Neilson, J. R. Newsome, R. A. Howe, W. S. Howells, and A. K. Soper, Nature (London) 287, 714 (1980).
http://dx.doi.org/10.1038/287714a0
51.
51. D. H. Powell, G. W. Neilson, and J. E. Enderby, J. Phys.: Condens. Matter 5, 5723 (1993).
http://dx.doi.org/10.1088/0953-8984/5/32/003
52.
52. Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 41, 157 (2008).
http://dx.doi.org/10.1021/ar700111a
53.
53. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvis, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
54.
54. K. A. Maerzke, G. Murdachaew, C. J. Mundy, G. K. Schenter, and J. I. Siepmann, J. Phys. Chem. A 113, 2075 (2009).
http://dx.doi.org/10.1021/jp808767y
55.
55. S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
56.
56. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
57.
57. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
58.
58. O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. Lett. 93, 153004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.153004
59.
59. J. Wang, G. Román-Pérez, J. M. Soler, E. Artacho, and M.-V. Fernández-Serra, J. Chem. Phys. 134, 024516 (2011).
http://dx.doi.org/10.1063/1.3521268
60.
60. S. Yoo and S. S. Xantheas, J. Chem. Phys. 134, 121105 (2011).
http://dx.doi.org/10.1063/1.3573375
61.
61. Z. Ma, Y. Zhang, and M. E. Tuckerman, J. Chem. Phys. 137, 044506 (2012).
http://dx.doi.org/10.1063/1.4736712
62.
62. J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello, J. Chem. Phys. 122, 014515 (2005).
http://dx.doi.org/10.1063/1.1828433
63.
63. R. Jonchiere, A. P. Seitsonen, G. Ferlat, A. M. Saitta, and R. Vuilleumier, J. Chem. Phys. 135, 154503 (2011).
http://dx.doi.org/10.1063/1.3651474
64.
64. I.-C. Lin, A. P. Seitsonen, I. Tavernelli, and U. Rothlisberger, J. Chem. Theory Comput. 8, 3902 (2012).
http://dx.doi.org/10.1021/ct3001848
65.
65. J. Schmidt, J. VandeVondele, I.-F. W. Kuo, D. Sebastiani, J. I. Siepmann, J. Hutter, and C. J. Mundy, J. Phys. Chem. B 113, 11959 (2009).
http://dx.doi.org/10.1021/jp901990u
66.
66. R. W. Williams and D. Malhotra, Chem. Phys. 327, 54 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.03.037
67.
67. C. Zhang, J. Wu, G. Galli, and F. Gygi, J. Chem. Theory Comput. 7, 3054 (2011).
http://dx.doi.org/10.1021/ct200329e
68.
68. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
69.
69. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.890
70.
70. J. P. Perdew and W. Yue, Phys. Rev. B 33, 8800 (1986);
http://dx.doi.org/10.1103/PhysRevB.33.8800
70.É. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009).
http://dx.doi.org/10.1021/ct900365q
71.
71. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
72.
72. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
73.
73. C. Zhang, D. Donadio, F. Gygi, and G. Galli, J. Chem. Theory Comput. 7, 1443 (2011).
http://dx.doi.org/10.1021/ct2000952
74.
74. T. Todorova, A. P. Seitsonen, J. Hutter, I. W. Kuo, and C. J. Mundy, J. Phys. Chem. B 110, 3685 (2006).
http://dx.doi.org/10.1021/jp055127v
75.
75. M. Guidon, F. Schiffmann, J. Hutter, and J. VandeVondele, J. Chem. Phys. 128, 214104 (2008).
http://dx.doi.org/10.1063/1.2931945
76.
76. M. Guidon, J. Hutter and J. VandeVondele, J. Chem. Theory Comput. 6, 2348 (2010).
http://dx.doi.org/10.1021/ct1002225
77.
77. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2471
78.
78.CPMD, Copyright IBM Corp 1990–2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001, see http://www.cpmd.org.
79.
79. F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 109, 6264 (1998).
http://dx.doi.org/10.1063/1.477267
80.
80. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
81.
81. W. Kohn and L. Sham, J. Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
82.
82. J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, and G. Galli, J. Chem. Phys. 120, 300 (2004).
http://dx.doi.org/10.1063/1.1630560
83.
83. S. Nosé, Mol. Phys. 52, 255 (1984);
http://dx.doi.org/10.1080/00268978400101201
83.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
84.
84. G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).
http://dx.doi.org/10.1063/1.463940
85.
85. I. W. Kuo, C. J. Mundy, M. J. McGrath, J. I. Siepmann, J. VandeVondele, M. Sprik, J. Hutter, B. Chen, M. L. Klein, F. Mohamed, M. Krack, and M. Parrinello, J. Phys. Chem. B 108, 12990 (2004).
http://dx.doi.org/10.1021/jp047788i
86.
86. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comp. Chem. 26, 1701 (2005);
http://dx.doi.org/10.1002/jcc.20291
86.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comp. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
87.
87. D. Beglov and B. Roux, J. Chem. Phys. 100, 9050 (1994).
http://dx.doi.org/10.1063/1.466711
88.
88. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983);
http://dx.doi.org/10.1063/1.445869
88.C. P. Lawrence and J. L. Skinner, Chem. Phys. Lett. 372, 842 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00526-8
89.
89. G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Chem. Phys. Lett. 418, 245 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.10.135
90.
90. G. Lamoureux and B. Roux, J. Phys. Chem. B 110, 3308 (2006).
http://dx.doi.org/10.1021/jp056043p
91.
91. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
92.
92. A. Grossfield, P. Ren, and J. W. Ponder, J. Am. Chem. Soc. 125, 15671 (2003).
http://dx.doi.org/10.1021/ja037005r
93.
93. L. X. Dang, J. E. Rice, J. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 113, 2481 (1991).
http://dx.doi.org/10.1021/ja00007a021
94.
94.See supplementary material at http://dx.doi.org/10.1063/1.4772761 for Figs. S-1 to S-13. [Supplementary Material]
95.
95. G. N. Chuev and M. V. Fedorov, Phys. Rev. E 68, 027702 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.027702
96.
96. J. M. Heuft and E. J. Meijer, J. Chem. Phys. 119, 11788 (2003).
http://dx.doi.org/10.1063/1.1624362
97.
97. E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, J. Chem. Phys. 121, 5400 (2004).
http://dx.doi.org/10.1063/1.1782074
98.
98. J. M. Sorenson, G. Hura, R. M. Glaeser, and T. Head-Gordon, J. Chem. Phys. 113, 9149 (2000).
http://dx.doi.org/10.1063/1.1319615
99.
99. K. Leung and S. B. Rempe, Phys. Chem. Chem. Phys. 8, 2153 (2006).
http://dx.doi.org/10.1039/b515126k
100.
100. M. Allesch, E. Schwegler, F. Gygi, and G. Galli, J. Chem. Phys. 120, 5192 (2004).
http://dx.doi.org/10.1063/1.1647529
101.
101. H. S. Lee and M. E. Tuckerman, J. Chem. Phys. 125, 154507 (2006).
http://dx.doi.org/10.1063/1.2354158
102.
102. H. S. Lee and M. E. Tuckerman, J. Chem. Phys. 126, 164501 (2007).
http://dx.doi.org/10.1063/1.2718521
103.
103. K. Leung, S. B. Rempe, and O. A. von Lilienfeld, J. Chem. Phys. 130, 204507 (2009).
http://dx.doi.org/10.1063/1.3137054
104.
104. S. B. Rempe, and T. R. Mattsson, and K. Leung, Phys. Chem. Chem. Phys. 10, 4685 (2008).
http://dx.doi.org/10.1039/b810017a
105.
105. R. W. Impey, P. A. Madden, and I. R. McDonald, J. Phys. Chem. 87, 5071 (1983).
http://dx.doi.org/10.1021/j150643a008
106.
106. S. Varma and S. B. Rempe, J. Am. Chem. Soc. 130, 15405 (2008).
http://dx.doi.org/10.1021/ja803575y
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/1/10.1063/1.4772761
Loading
/content/aip/journal/jcp/138/1/10.1063/1.4772761
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/1/10.1063/1.4772761
2013-01-03
2015-01-31

Abstract

The solvation structures of , , and ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0–5.5, 6.0–6.4, and 6.0–6.5 for , , and , respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/1/1.4772761.html;jsessionid=h282ehsrlkt76.x-aip-live-06?itemId=/content/aip/journal/jcp/138/1/10.1063/1.4772761&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hydration structure of salt solutions from ab initio molecular dynamics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/1/10.1063/1.4772761
10.1063/1.4772761
SEARCH_EXPAND_ITEM