1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: A six-dimensional state-to-state quantum dynamics study of the H + CH4 → H2 + CH3 reaction (J = 0)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/1/10.1063/1.4774116
1.
1. D. H. Zhang, J. Chem. Phys. 125, 133102 (2006).
http://dx.doi.org/10.1063/1.2217439
2.
2. M. T. Cvitas and S. C. Althorpe, J. Chem. Phys. 134, 024309 (2011).
http://dx.doi.org/10.1063/1.3525541
3.
3. C. Xiao et al., Science 333, 440 (2011).
http://dx.doi.org/10.1126/science.1205770
4.
4. S. Liu, X. Xu, and D. H. Zhang, J. Chem. Phys. 136, 144302 (2012).
http://dx.doi.org/10.1063/1.3701266
5.
5. S. Liu et al., Faraday Discuss. 157, 101 (2012).
http://dx.doi.org/10.1039/c2fd20018j
6.
6. J. P. Camden, H. A. Bechtel, D. J. A. Brown, and R. N. Zare, J. Chem. Phys. 123, 134301 (2005).
http://dx.doi.org/10.1063/1.2034507
7.
7. J. P. Camden et al., J. Am. Chem. Soc. 127, 11898 (2005).
http://dx.doi.org/10.1021/ja052684m
8.
8. J. P. Camden et al., J. Phys. Chem. A 110, 677 (2006).
http://dx.doi.org/10.1021/jp053827u
9.
9. W. Hu et al., J. Phys. Chem. A 110, 3017 (2006).
http://dx.doi.org/10.1021/jp055017o
10.
10. W. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 107, 12782 (2010).
http://dx.doi.org/10.1073/pnas.1006910107
11.
11. T. Wu, H.-J. Werner, and U. Manthe, Science 306, 2227 (2004).
http://dx.doi.org/10.1126/science.1104085
12.
12. X. Zhang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 124, 021104 (2006).
http://dx.doi.org/10.1063/1.2162532
13.
13. T. V. Albu, J. Espinosa-García, and D. G. Truhlar, Chem. Rev. 107, 5101 (2007).
http://dx.doi.org/10.1021/cr078026x
14.
14. Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011).
http://dx.doi.org/10.1063/1.3552088
15.
15. H. Yu and G. Nyman, J. Chem. Phys. 111, 3508 (1999).
http://dx.doi.org/10.1063/1.479634
16.
16. D. Y. Wang and J. M. Bowman, J. Chem. Phys. 115, 2055 (2001).
http://dx.doi.org/10.1063/1.1383048
17.
17. J. M. Bowman, D. Wang, X. Huang, F. Huarte-Larranaga, and U. Manthe, J. Chem. Phys. 114, 9683 (2001).
http://dx.doi.org/10.1063/1.1370944
18.
18. M. L. Wang and J. Z. H. Zhang, J. Chem. Phys. 117, 3081 (2002).
http://dx.doi.org/10.1063/1.1494782
19.
19. M. Yang, S.-Y. Lee, and D. H. Zhang, J. Chem. Phys. 117, 9539 (2002).
http://dx.doi.org/10.1063/1.1524181
20.
20. B. Kerkeni and D. C. Clary, J. Chem. Phys. 120, 2308 (2004).
http://dx.doi.org/10.1063/1.1635816
21.
21. G. Schiffel and U. Manthe, J. Chem. Phys. 132, 084103 (2010).
http://dx.doi.org/10.1063/1.3304920
22.
22. J. Palma and D. C. Clary, J. Chem. Phys. 112, 1859 (2000).
http://dx.doi.org/10.1063/1.480749
23.
23. Y. Zhou, C. Wang, and D. H. Zhang, J. Chem. Phys. 135, 024313 (2011).
http://dx.doi.org/10.1063/1.3609923
24.
24. M. Yang, D. H. Zhang, and S.-Y. Lee, J. Chem. Phys. 126, 064303 (2007).
http://dx.doi.org/10.1063/1.2434171
25.
25. Z. Zhang, Y. Zhou, D. H. Zhang, G. Czakó, and J. M. Bowman, J. Phys. Chem. Lett. 3, 3416 (2012).
http://dx.doi.org/10.1021/jz301649w
26.
26. T. Peng and J. Z. H. Zhang, J. Chem. Phys. 105, 6072 (1996).
http://dx.doi.org/10.1063/1.472444
27.
27. J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011).
http://dx.doi.org/10.1039/c1cp21668f
28.
28. G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
http://dx.doi.org/10.1063/1.3054300
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4774116 for numerical details. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/1/10.1063/1.4774116
Loading
/content/aip/journal/jcp/138/1/10.1063/1.4774116
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/1/10.1063/1.4774116
2013-01-03
2014-09-03

Abstract

We report a quantum state-to-state reaction dynamics study for the title reaction. The calculation was based on an approximation that we introduced to the eight-dimensional model for the X + YCZ3 → XY + CZ3 type of reactions that restricts the non-reacting CZ3 group in C 3V symmetry proposed by Palma and Clary [J. Chem. Phys.112, 1859 (Year: 2000)10.1063/1.480749], by assuming that the CZ3 group can rotate freely with respect to its C 3V symmetry axis. With the CH bond length in group fixed at its equilibrium distance, the degree of freedom included in the calculation was reduced to six. Our calculation shows that the six-dimensional treatment can produce reaction probabilities essentially indistinguishable from the seven-dimensional (with CH bond length fixed in the original eight-dimensional model) results. The product vibrational/rotational state distributions and product energy partitioning information are presented for ground initial rovibrational state with the total angular momentum J = 0.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/1/1.4774116.html;jsessionid=5rog8pe79nugf.x-aip-live-06?itemId=/content/aip/journal/jcp/138/1/10.1063/1.4774116&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: A six-dimensional state-to-state quantum dynamics study of the H + CH4 → H2 + CH3 reaction (J = 0)
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/1/10.1063/1.4774116
10.1063/1.4774116
SEARCH_EXPAND_ITEM