1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: A six-dimensional state-to-state quantum dynamics study of the H + CH4 → H2 + CH3 reaction (J = 0)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/1/10.1063/1.4774116
1.
1. D. H. Zhang, J. Chem. Phys. 125, 133102 (2006).
http://dx.doi.org/10.1063/1.2217439
2.
2. M. T. Cvitas and S. C. Althorpe, J. Chem. Phys. 134, 024309 (2011).
http://dx.doi.org/10.1063/1.3525541
3.
3. C. Xiao et al., Science 333, 440 (2011).
http://dx.doi.org/10.1126/science.1205770
4.
4. S. Liu, X. Xu, and D. H. Zhang, J. Chem. Phys. 136, 144302 (2012).
http://dx.doi.org/10.1063/1.3701266
5.
5. S. Liu et al., Faraday Discuss. 157, 101 (2012).
http://dx.doi.org/10.1039/c2fd20018j
6.
6. J. P. Camden, H. A. Bechtel, D. J. A. Brown, and R. N. Zare, J. Chem. Phys. 123, 134301 (2005).
http://dx.doi.org/10.1063/1.2034507
7.
7. J. P. Camden et al., J. Am. Chem. Soc. 127, 11898 (2005).
http://dx.doi.org/10.1021/ja052684m
8.
8. J. P. Camden et al., J. Phys. Chem. A 110, 677 (2006).
http://dx.doi.org/10.1021/jp053827u
9.
9. W. Hu et al., J. Phys. Chem. A 110, 3017 (2006).
http://dx.doi.org/10.1021/jp055017o
10.
10. W. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 107, 12782 (2010).
http://dx.doi.org/10.1073/pnas.1006910107
11.
11. T. Wu, H.-J. Werner, and U. Manthe, Science 306, 2227 (2004).
http://dx.doi.org/10.1126/science.1104085
12.
12. X. Zhang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 124, 021104 (2006).
http://dx.doi.org/10.1063/1.2162532
13.
13. T. V. Albu, J. Espinosa-García, and D. G. Truhlar, Chem. Rev. 107, 5101 (2007).
http://dx.doi.org/10.1021/cr078026x
14.
14. Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011).
http://dx.doi.org/10.1063/1.3552088
15.
15. H. Yu and G. Nyman, J. Chem. Phys. 111, 3508 (1999).
http://dx.doi.org/10.1063/1.479634
16.
16. D. Y. Wang and J. M. Bowman, J. Chem. Phys. 115, 2055 (2001).
http://dx.doi.org/10.1063/1.1383048
17.
17. J. M. Bowman, D. Wang, X. Huang, F. Huarte-Larranaga, and U. Manthe, J. Chem. Phys. 114, 9683 (2001).
http://dx.doi.org/10.1063/1.1370944
18.
18. M. L. Wang and J. Z. H. Zhang, J. Chem. Phys. 117, 3081 (2002).
http://dx.doi.org/10.1063/1.1494782
19.
19. M. Yang, S.-Y. Lee, and D. H. Zhang, J. Chem. Phys. 117, 9539 (2002).
http://dx.doi.org/10.1063/1.1524181
20.
20. B. Kerkeni and D. C. Clary, J. Chem. Phys. 120, 2308 (2004).
http://dx.doi.org/10.1063/1.1635816
21.
21. G. Schiffel and U. Manthe, J. Chem. Phys. 132, 084103 (2010).
http://dx.doi.org/10.1063/1.3304920
22.
22. J. Palma and D. C. Clary, J. Chem. Phys. 112, 1859 (2000).
http://dx.doi.org/10.1063/1.480749
23.
23. Y. Zhou, C. Wang, and D. H. Zhang, J. Chem. Phys. 135, 024313 (2011).
http://dx.doi.org/10.1063/1.3609923
24.
24. M. Yang, D. H. Zhang, and S.-Y. Lee, J. Chem. Phys. 126, 064303 (2007).
http://dx.doi.org/10.1063/1.2434171
25.
25. Z. Zhang, Y. Zhou, D. H. Zhang, G. Czakó, and J. M. Bowman, J. Phys. Chem. Lett. 3, 3416 (2012).
http://dx.doi.org/10.1021/jz301649w
26.
26. T. Peng and J. Z. H. Zhang, J. Chem. Phys. 105, 6072 (1996).
http://dx.doi.org/10.1063/1.472444
27.
27. J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011).
http://dx.doi.org/10.1039/c1cp21668f
28.
28. G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
http://dx.doi.org/10.1063/1.3054300
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.4774116 for numerical details. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/1/10.1063/1.4774116
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The eight-dimensional Jacobi coordinates for the X + YCZ3 system.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The total and j z specific reaction probabilities for the ground initial state of the title reaction for J = 0, obtained using 7D model (with the CH bond length in CH3 group fixed in the original 8D model), in comparison with those obtained from 6D total reaction calculation and from the 6D RPD state-to-state calculation. (b) Product CH3 umbrella vibrational state specific reaction probabilities as a function of collision energy. (c) Product H2 vibrational state specific reaction probabilities as a function of collision energy. (d) Product vibration distributions as a function of collision energy, with P(0,0), P(0,1), P(0,2), and P(1,0) denoting that for the ground product, the first and second CH3 umbrella excited state, and the first H2 stretch excited state, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Rotational state distributions for (a) H2 and (b) CH3 product at E c = 0.6, 0.8, 1.0, and 1.4 eV.

Image of FIG. 4.

Click to view

FIG. 4.

The fraction of the total available energy in product channel going into vibration and rotation of H2 and CH3 as a function of translational energy.

Loading

Article metrics loading...

/content/aip/journal/jcp/138/1/10.1063/1.4774116
2013-01-03
2014-04-24

Abstract

We report a quantum state-to-state reaction dynamics study for the title reaction. The calculation was based on an approximation that we introduced to the eight-dimensional model for the X + YCZ3 → XY + CZ3 type of reactions that restricts the non-reacting CZ3 group in C 3V symmetry proposed by Palma and Clary [J. Chem. Phys.112, 1859 (Year: 2000)10.1063/1.480749], by assuming that the CZ3 group can rotate freely with respect to its C 3V symmetry axis. With the CH bond length in group fixed at its equilibrium distance, the degree of freedom included in the calculation was reduced to six. Our calculation shows that the six-dimensional treatment can produce reaction probabilities essentially indistinguishable from the seven-dimensional (with CH bond length fixed in the original eight-dimensional model) results. The product vibrational/rotational state distributions and product energy partitioning information are presented for ground initial rovibrational state with the total angular momentum J = 0.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/1/1.4774116.html;jsessionid=11n8w7sikf3io.x-aip-live-02?itemId=/content/aip/journal/jcp/138/1/10.1063/1.4774116&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: A six-dimensional state-to-state quantum dynamics study of the H + CH4 → H2 + CH3 reaction (J = 0)
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/1/10.1063/1.4774116
10.1063/1.4774116
SEARCH_EXPAND_ITEM