1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The release of trapped gases from amorphous solid water films. I. “Top-down” crystallization-induced crack propagation probed using the molecular volcano
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/10/10.1063/1.4793311
1.
1. R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013).
http://dx.doi.org/10.1063/1.4793312
2.
2. L. J. Rothschild and R. L. Mancinelli, Nature (London) 409, 1092 (2001).
http://dx.doi.org/10.1038/35059215
3.
3. M. P. Collings, M. A. Anderson, R. Chen, J. W. Dever, S. Viti, D. A. Williams, and M. R. S. McCoustra, Mon. Not. R. Astron. Soc. 354, 1133 (2004).
http://dx.doi.org/10.1111/j.1365-2966.2004.08272.x
4.
4. M. R. Hogerheijde, E. A. Bergin, C. Brinch, L. I. Cleeves, J. K. J. Fogel, G. A. Blake, C. Dominik, D. C. Lis, G. Melnick, D. Neufeld, O. Panić, J. C. Pearson, L. Kristensen, U. A. Yıldız, and E. F. van Dishoeck, Science 334, 338 (2011).
http://dx.doi.org/10.1126/science.1208931
5.
5. M. N. Mautner, V. Abdelsayed, M. S. El-Shall, J. D. Thrower, S. D. Green, M. P. Collings, and M. R. S. McCoustra, Faraday Discuss. 133, 103 (2006).
http://dx.doi.org/10.1039/b518207g
6.
6. A. H. Delsemme, J. Phys. Chem. 87, 4214 (1983).
http://dx.doi.org/10.1021/j100244a047
7.
7. A. Bar-Nun, J. Dror, E. Kochavi, D. Laufer, D. Kovetz, and T. Owen, Origins of Life Evol. Biosphere 16, 220 (1986).
http://dx.doi.org/10.1007/BF02421991
8.
8. A. Bar-Nun, J. Dror, E. Kochavi, and D. Laufer, Phys. Rev. B 35, 2427 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.2427
9.
9. D. Laufer, E. Kochavi, and A. Bar-Nun, Phys. Rev. B 36, 9219 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.9219
10.
10. A. Bar-Nun, I. Kleinfeld, and E. Kochavi, Phys. Rev. B 38, 7749 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.7749
11.
11. R. L. Hudson and B. Donn, Icarus 94, 326 (1991).
http://dx.doi.org/10.1016/0019-1035(91)90231-H
12.
12. P. Jenniskens and D. F. Blake, Science 265, 753 (1994).
http://dx.doi.org/10.1126/science.11539186
13.
13. P. Jenniskens and D. F. Blake, Astrophys. J. 473, 1104 (1996).
http://dx.doi.org/10.1086/178220
14.
14. L. J. Allamandola, M. P. Bernstein, S. A. Sandford, and R. L. Walker, Space Sci. Rev. 90, 219 (1999).
http://dx.doi.org/10.1023/A:1005210417396
15.
15. D. J. Burke and W. A. Brown, Phys. Chem. Chem. Phys. 12, 5947 (2010).
http://dx.doi.org/10.1039/b917005g
16.
16. R. S. Smith, N. G. Petrik, G. A. Kimmel, and B. D. Kay, Acc. Chem. Res. 45, 33 (2012).
http://dx.doi.org/10.1021/ar200070w
17.
17. P. Jenniskens, S. F. Banham, D. F. Blake, and M. R. S. McCoustra, J. Chem. Phys. 107, 1232 (1997).
http://dx.doi.org/10.1063/1.474468
18.
18. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Phys. Rev. Lett. 79, 909 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.909
19.
19. P. Ayotte, R. S. Smith, K. P. Stevenson, Z. Dohnalek, G. A. Kimmel, and B. D. Kay, J. Geophys. Res., [Planets] 106, 33387, doi:10.1029/2000JE001362 (2001).
http://dx.doi.org/10.1029/2000JE001362
20.
20. R. A. May, R. S. Smith, and B. D. Kay, Phys. Chem. Chem. Phys. 13, 19848 (2011).
http://dx.doi.org/10.1039/c1cp21855g
21.
21. R. A. May, R. S. Smith, and B. D. Kay, J. Phys. Chem. Lett. 3, 327 (2012).
http://dx.doi.org/10.1021/jz201648g
22.
22. R. S. Smith, T. Zubkov, and B. D. Kay, J. Chem. Phys. 124, 114710 (2006).
http://dx.doi.org/10.1063/1.2177658
23.
23. T. Zubkov, R. S. Smith, T. R. Engstrom, and B. D. Kay, J. Chem. Phys. 127, 184707 (2007).
http://dx.doi.org/10.1063/1.2790432
24.
24. G. A. Kimmel, J. Matthiesen, M. Baer, C. J. Mundy, N. G. Petrik, R. S. Smith, Z. Dohnalek, and B. D. Kay, J. Am. Chem. Soc. 131, 12838 (2009).
http://dx.doi.org/10.1021/ja904708f
25.
25. S. L. Tait, Z. Dohnalek, C. T. Campbell, and B. D. Kay, J. Chem. Phys. 125, 234308 (2006).
http://dx.doi.org/10.1063/1.2400235
26.
26. S. M. McClure, E. T. Barlow, M. C. Akin, D. J. Safarik, T. M. Truskett, and C. B. Mullins, J. Phys. Chem. B 110, 17987 (2006).
http://dx.doi.org/10.1021/jp063259y
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4793311 for several additional figures that are not necessary for an overall understanding of the scientific arguments presented here but may be of interest to some readers. Typically these figures make the same point as those in the main text but show results for other adsorbate molecules. [Supplementary Material]
28.
28. P. Lofgren, P. Ahlstrom, D. V. Chakarov, J. Lausmaa, and B. Kasemo, Surf. Sci. 367, L19 (1996).
http://dx.doi.org/10.1016/S0039-6028(96)00944-2
29.
29. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci. 367, L13 (1996).
http://dx.doi.org/10.1016/S0039-6028(96)00943-0
30.
30. W. B. Hillig and D. Turnbull, J. Chem. Phys. 24, 914 (1956).
http://dx.doi.org/10.1063/1.1742646
31.
31. H. R. Pruppacher, J. Chem. Phys. 47, 1807 (1967).
http://dx.doi.org/10.1063/1.1712169
32.
32. E. H. G. Backus, M. L. Grecea, A. W. Kleyn, and M. Bonn, Phys. Rev. Lett. 92, 236101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.236101
33.
33. Z. Dohnalek, G. A. Kimmel, R. L. Ciolli, K. P. Stevenson, R. S. Smith, and B. D. Kay, J. Chem. Phys. 112, 5932 (2000).
http://dx.doi.org/10.1063/1.481166
34.
34. D. J. Safarik and C. B. Mullins, J. Chem. Phys. 121, 6003 (2004).
http://dx.doi.org/10.1063/1.1779171
35.
35. Y. Sun, L. Zhu, K. L. Kearns, M. D. Ediger, and L. Yu, Proc. Natl. Acad. Sci. U.S.A. 108, 5990 (2011).
http://dx.doi.org/10.1073/pnas.1017995108
36.
36. A. Sakai, T. Tatsumi, and K. Ishida, J. Vac. Sci. Technol. A 11, 2950 (1993).
http://dx.doi.org/10.1116/1.578674
37.
37. R. S. Smith, J. Matthiesen, and B. D. Kay, J. Chem. Phys. 133, 174504 (2010).
http://dx.doi.org/10.1063/1.3497654
38.
38. J. Matthiesen, R. S. Smith, and B. D. Kay, J. Chem. Phys. 133, 174505 (2010).
http://dx.doi.org/10.1063/1.3497648
39.
39. R. S. Smith and B. D. Kay, Nature (London) 398, 788 (1999).
http://dx.doi.org/10.1038/19725
40.
40. R. S. Smith, J. Matthiesen, J. Knox, and B. D. Kay, J. Phys. Chem. A 115, 5908 (2011).
http://dx.doi.org/10.1021/jp110297q
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4793311
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Temperature programmed desorption (TPD) spectra of 1 ML of Ar, Kr, and Xe desorbing directly from graphene (dashed lines) and covered by 300 ML of amorphous solid water (solid lines) at a heating rate of 1 K/s. The top panel displays a representative TPD spectrum for the ASW overlayer.

Image of FIG. 2.

Click to view

FIG. 2.

TPD spectra 1 ML of Ar covered by ASW overlayer thicknesses from 25 to 800 ML. The heating rate was 1 K/s. The Ar desorption shifts from the “volcano” peak to the “trapped” peak with increasing overlayer coverage.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The fraction of 1 ML of Ar (open circles) that remains “trapped” as a function of overlayer thickness at a heating rate of 1 K/s. The line through the experimental data is a fit using Eq. (1) . The other line is the derivative, dF/dL, of the fit line. The derivative curve yields the distribution of vertical crack lengths. (b) The vertical crack length distributions for Ar, Kr, Xe, CH4, N2, O2, and CO obtained from the derivative of the trapped fraction versus overlayer thickness for the individual species as is demonstrated in (a). The vertical dashed line is the mean crack length for all of the gases.

Image of FIG. 4.

Click to view

FIG. 4.

(a) The fraction of 1 ML of Ar that remains “trapped” as a function of overlayer thickness for a series of heating rates. The lines are fits to the trapped fraction versus overlayer thickness similar to that in Fig. 3(a) . (b) Derivative, dF/dL, of the lines in (a) indicating the vertical crack length distribution.

Image of FIG. 5.

Click to view

FIG. 5.

Comparison of two methods for varying the amount of ASW on top of 1 ML Ar. In the first method (squares), 1 ML Ar is fixed beneath increasing amounts of ASW while in the second method (circles) 1 ML Ar is moved through a fixed 600 ML ASW film. (a) Comparison of the volcano peak temperature, T V , between the two methods as a function of the thickness of ASW on top. For both methods, T V is nearly identical for a given overlayer thickness. (b) Comparison of the trapped fraction between the two methods as a function of the thickness of ASW on top. At a given point the trapped fraction is larger when Ar is sandwiched between layers of ASW.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Volcano peak temperatures, T v , for Ar (squares) placed at the bottom of and for O2 (circles) placed at various levels in a 300 ML ASW. The Ar volcano peak temperature remains constant while the O2 peak moves to lower temperature as it is placed higher in the ASW. (b) The corresponding trapped fraction for Ar (squares) placed at the bottom of and for O2 (circles) placed at various levels in a 300 ML ASW.

Image of FIG. 7.

Click to view

FIG. 7.

(a) Desorption spectra (solid lines) of 1 ML of Ar at an isothermal temperature of 154 K with varying ASW overlayer thickness. The dashed line is a representative ASW spectrum that was nearly the same in all of the experiments independent of the overlayer thickness. (b) A plot of the volcano peak time, t V , (symbols) versus ASW overlayer thickness at a variety of isothermal temperatures. The lines are linear fits to the data above 100 ML.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Arrhenius plot of the apparent crack velocity (□) obtained from the slopes of linear fits of the volcano time versus overlayer thickness for the isothermal measurements in Fig. 7 and others. The fit parameters were v o = 4.3 × 1019 ML/s and E a = 54 kJ/mol. (Inset) Comparison of apparent crack velocity data with ASW crystallization growth rates from Dohnalek et al. 33 (■), Backus et al. 32 (★), and Safarik and Mullins 34 (◆). (b) Arrhenius fit to induction times form the y-intercept of linear fits of the volcano time versus overlayer thickness for the isothermal measurements in Fig. 7 and others (◯). The fit parameters were v o = 5.2 × 10−27 s and E a = 80 kJ/mol. (Inset) Comparison of induction time data with ASW crystallization induction time from Dohnalek et al. 33 (●). Error bars represent an estimated 10 s uncertainty in the time the isothermal temperature is reached during the heating ramp.

Image of FIG. 9.

Click to view

FIG. 9.

(a) Volcano peak temperature, T v , as a function of ASW overlayer thickness, L, for a series of heating rates from 0.1 to 2 K/s. (b) Volcano peak temperature, T v , versus the overlayer thickness scaled by the heating rate, βL. The thickness rescaling collapses the T v data onto a single curve. (c) Arrhenius plot of the quantity, , a quantity that is shown in Eq. (5) to be proportional to the crack velocity, v(T V ). The nonlinearity of the plot indicates that the activation energy is temperature and heating rate dependent in contrast to the isothermal results in Figs. 7 and 8 .

Image of FIG. 10.

Click to view

FIG. 10.

Coupled induction and crystallization growth front propagation model. ASW crystallization begins at or near the outer surface, then after an induction period, the crystallization front propagates downward leading to the formation of cracks. Finally, the cracks reach the bottom of the ASW releasing the covered gas.

Image of FIG. 11.

Click to view

FIG. 11.

(a) Arrhenius plot of the crystallization/crack front velocities calculated using Eq. (9) , which was derived using the coupled induction and front propagation model. The dashed line is the temperature dependent velocity obtained from isothermal experiments. (b) Arrhenius plot of experimental crystallization/crack front velocities calculated using Eq. (5) . The model calculated and experimental velocities are qualitatively similar albeit shifted by ∼2.0 K.

Image of FIG. 12.

Click to view

FIG. 12.

Crystallization/crack front propagation activation energy as a function of ASW overlayer thickness determined from TPD experiments (squares) and from the coupled induction and front propagation model (solid line). The horizontal dashed lines demark the activation energies for induction (80 kJ/mol) and crack front propagation (54 kJ/mol) determined from the isothermal experiments in Fig. 8 .

Loading

Article metrics loading...

/content/aip/journal/jcp/138/10/10.1063/1.4793311
2013-03-08
2014-04-25

Abstract

In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys.138, 104502 (Year: 2013)10.1063/1.4793312), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the “molecular volcano.” The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the “molecular volcano” desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/10/1.4793311.html;jsessionid=4jlg6tdkl03ts.x-aip-live-02?itemId=/content/aip/journal/jcp/138/10/10.1063/1.4793311&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The release of trapped gases from amorphous solid water films. I. “Top-down” crystallization-induced crack propagation probed using the molecular volcano
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4793311
10.1063/1.4793311
SEARCH_EXPAND_ITEM