Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013).
2. L. J. Rothschild and R. L. Mancinelli, Nature (London) 409, 1092 (2001).
3. M. P. Collings, M. A. Anderson, R. Chen, J. W. Dever, S. Viti, D. A. Williams, and M. R. S. McCoustra, Mon. Not. R. Astron. Soc. 354, 1133 (2004).
4. M. R. Hogerheijde, E. A. Bergin, C. Brinch, L. I. Cleeves, J. K. J. Fogel, G. A. Blake, C. Dominik, D. C. Lis, G. Melnick, D. Neufeld, O. Panić, J. C. Pearson, L. Kristensen, U. A. Yıldız, and E. F. van Dishoeck, Science 334, 338 (2011).
5. M. N. Mautner, V. Abdelsayed, M. S. El-Shall, J. D. Thrower, S. D. Green, M. P. Collings, and M. R. S. McCoustra, Faraday Discuss. 133, 103 (2006).
6. A. H. Delsemme, J. Phys. Chem. 87, 4214 (1983).
7. A. Bar-Nun, J. Dror, E. Kochavi, D. Laufer, D. Kovetz, and T. Owen, Origins of Life Evol. Biosphere 16, 220 (1986).
8. A. Bar-Nun, J. Dror, E. Kochavi, and D. Laufer, Phys. Rev. B 35, 2427 (1987).
9. D. Laufer, E. Kochavi, and A. Bar-Nun, Phys. Rev. B 36, 9219 (1987).
10. A. Bar-Nun, I. Kleinfeld, and E. Kochavi, Phys. Rev. B 38, 7749 (1988).
11. R. L. Hudson and B. Donn, Icarus 94, 326 (1991).
12. P. Jenniskens and D. F. Blake, Science 265, 753 (1994).
13. P. Jenniskens and D. F. Blake, Astrophys. J. 473, 1104 (1996).
14. L. J. Allamandola, M. P. Bernstein, S. A. Sandford, and R. L. Walker, Space Sci. Rev. 90, 219 (1999).
15. D. J. Burke and W. A. Brown, Phys. Chem. Chem. Phys. 12, 5947 (2010).
16. R. S. Smith, N. G. Petrik, G. A. Kimmel, and B. D. Kay, Acc. Chem. Res. 45, 33 (2012).
17. P. Jenniskens, S. F. Banham, D. F. Blake, and M. R. S. McCoustra, J. Chem. Phys. 107, 1232 (1997).
18. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Phys. Rev. Lett. 79, 909 (1997).
19. P. Ayotte, R. S. Smith, K. P. Stevenson, Z. Dohnalek, G. A. Kimmel, and B. D. Kay, J. Geophys. Res., [Planets] 106, 33387, doi:10.1029/2000JE001362 (2001).
20. R. A. May, R. S. Smith, and B. D. Kay, Phys. Chem. Chem. Phys. 13, 19848 (2011).
21. R. A. May, R. S. Smith, and B. D. Kay, J. Phys. Chem. Lett. 3, 327 (2012).
22. R. S. Smith, T. Zubkov, and B. D. Kay, J. Chem. Phys. 124, 114710 (2006).
23. T. Zubkov, R. S. Smith, T. R. Engstrom, and B. D. Kay, J. Chem. Phys. 127, 184707 (2007).
24. G. A. Kimmel, J. Matthiesen, M. Baer, C. J. Mundy, N. G. Petrik, R. S. Smith, Z. Dohnalek, and B. D. Kay, J. Am. Chem. Soc. 131, 12838 (2009).
25. S. L. Tait, Z. Dohnalek, C. T. Campbell, and B. D. Kay, J. Chem. Phys. 125, 234308 (2006).
26. S. M. McClure, E. T. Barlow, M. C. Akin, D. J. Safarik, T. M. Truskett, and C. B. Mullins, J. Phys. Chem. B 110, 17987 (2006).
27.See supplementary material at for several additional figures that are not necessary for an overall understanding of the scientific arguments presented here but may be of interest to some readers. Typically these figures make the same point as those in the main text but show results for other adsorbate molecules. [Supplementary Material]
28. P. Lofgren, P. Ahlstrom, D. V. Chakarov, J. Lausmaa, and B. Kasemo, Surf. Sci. 367, L19 (1996).
29. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci. 367, L13 (1996).
30. W. B. Hillig and D. Turnbull, J. Chem. Phys. 24, 914 (1956).
31. H. R. Pruppacher, J. Chem. Phys. 47, 1807 (1967).
32. E. H. G. Backus, M. L. Grecea, A. W. Kleyn, and M. Bonn, Phys. Rev. Lett. 92, 236101 (2004).
33. Z. Dohnalek, G. A. Kimmel, R. L. Ciolli, K. P. Stevenson, R. S. Smith, and B. D. Kay, J. Chem. Phys. 112, 5932 (2000).
34. D. J. Safarik and C. B. Mullins, J. Chem. Phys. 121, 6003 (2004).
35. Y. Sun, L. Zhu, K. L. Kearns, M. D. Ediger, and L. Yu, Proc. Natl. Acad. Sci. U.S.A. 108, 5990 (2011).
36. A. Sakai, T. Tatsumi, and K. Ishida, J. Vac. Sci. Technol. A 11, 2950 (1993).
37. R. S. Smith, J. Matthiesen, and B. D. Kay, J. Chem. Phys. 133, 174504 (2010).
38. J. Matthiesen, R. S. Smith, and B. D. Kay, J. Chem. Phys. 133, 174505 (2010).
39. R. S. Smith and B. D. Kay, Nature (London) 398, 788 (1999).
40. R. S. Smith, J. Matthiesen, J. Knox, and B. D. Kay, J. Phys. Chem. A 115, 5908 (2011).

Data & Media loading...


Article metrics loading...



In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys.138, 104502 (Year: 2013)10.1063/1.4793312), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the “molecular volcano.” The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the “molecular volcano” desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd