1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The release of trapped gases from amorphous solid water films. I. “Top-down” crystallization-induced crack propagation probed using the molecular volcano
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/10/10.1063/1.4793311
1.
1. R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013).
http://dx.doi.org/10.1063/1.4793312
2.
2. L. J. Rothschild and R. L. Mancinelli, Nature (London) 409, 1092 (2001).
http://dx.doi.org/10.1038/35059215
3.
3. M. P. Collings, M. A. Anderson, R. Chen, J. W. Dever, S. Viti, D. A. Williams, and M. R. S. McCoustra, Mon. Not. R. Astron. Soc. 354, 1133 (2004).
http://dx.doi.org/10.1111/j.1365-2966.2004.08272.x
4.
4. M. R. Hogerheijde, E. A. Bergin, C. Brinch, L. I. Cleeves, J. K. J. Fogel, G. A. Blake, C. Dominik, D. C. Lis, G. Melnick, D. Neufeld, O. Panić, J. C. Pearson, L. Kristensen, U. A. Yıldız, and E. F. van Dishoeck, Science 334, 338 (2011).
http://dx.doi.org/10.1126/science.1208931
5.
5. M. N. Mautner, V. Abdelsayed, M. S. El-Shall, J. D. Thrower, S. D. Green, M. P. Collings, and M. R. S. McCoustra, Faraday Discuss. 133, 103 (2006).
http://dx.doi.org/10.1039/b518207g
6.
6. A. H. Delsemme, J. Phys. Chem. 87, 4214 (1983).
http://dx.doi.org/10.1021/j100244a047
7.
7. A. Bar-Nun, J. Dror, E. Kochavi, D. Laufer, D. Kovetz, and T. Owen, Origins of Life Evol. Biosphere 16, 220 (1986).
http://dx.doi.org/10.1007/BF02421991
8.
8. A. Bar-Nun, J. Dror, E. Kochavi, and D. Laufer, Phys. Rev. B 35, 2427 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.2427
9.
9. D. Laufer, E. Kochavi, and A. Bar-Nun, Phys. Rev. B 36, 9219 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.9219
10.
10. A. Bar-Nun, I. Kleinfeld, and E. Kochavi, Phys. Rev. B 38, 7749 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.7749
11.
11. R. L. Hudson and B. Donn, Icarus 94, 326 (1991).
http://dx.doi.org/10.1016/0019-1035(91)90231-H
12.
12. P. Jenniskens and D. F. Blake, Science 265, 753 (1994).
http://dx.doi.org/10.1126/science.11539186
13.
13. P. Jenniskens and D. F. Blake, Astrophys. J. 473, 1104 (1996).
http://dx.doi.org/10.1086/178220
14.
14. L. J. Allamandola, M. P. Bernstein, S. A. Sandford, and R. L. Walker, Space Sci. Rev. 90, 219 (1999).
http://dx.doi.org/10.1023/A:1005210417396
15.
15. D. J. Burke and W. A. Brown, Phys. Chem. Chem. Phys. 12, 5947 (2010).
http://dx.doi.org/10.1039/b917005g
16.
16. R. S. Smith, N. G. Petrik, G. A. Kimmel, and B. D. Kay, Acc. Chem. Res. 45, 33 (2012).
http://dx.doi.org/10.1021/ar200070w
17.
17. P. Jenniskens, S. F. Banham, D. F. Blake, and M. R. S. McCoustra, J. Chem. Phys. 107, 1232 (1997).
http://dx.doi.org/10.1063/1.474468
18.
18. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Phys. Rev. Lett. 79, 909 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.909
19.
19. P. Ayotte, R. S. Smith, K. P. Stevenson, Z. Dohnalek, G. A. Kimmel, and B. D. Kay, J. Geophys. Res., [Planets] 106, 33387, doi:10.1029/2000JE001362 (2001).
http://dx.doi.org/10.1029/2000JE001362
20.
20. R. A. May, R. S. Smith, and B. D. Kay, Phys. Chem. Chem. Phys. 13, 19848 (2011).
http://dx.doi.org/10.1039/c1cp21855g
21.
21. R. A. May, R. S. Smith, and B. D. Kay, J. Phys. Chem. Lett. 3, 327 (2012).
http://dx.doi.org/10.1021/jz201648g
22.
22. R. S. Smith, T. Zubkov, and B. D. Kay, J. Chem. Phys. 124, 114710 (2006).
http://dx.doi.org/10.1063/1.2177658
23.
23. T. Zubkov, R. S. Smith, T. R. Engstrom, and B. D. Kay, J. Chem. Phys. 127, 184707 (2007).
http://dx.doi.org/10.1063/1.2790432
24.
24. G. A. Kimmel, J. Matthiesen, M. Baer, C. J. Mundy, N. G. Petrik, R. S. Smith, Z. Dohnalek, and B. D. Kay, J. Am. Chem. Soc. 131, 12838 (2009).
http://dx.doi.org/10.1021/ja904708f
25.
25. S. L. Tait, Z. Dohnalek, C. T. Campbell, and B. D. Kay, J. Chem. Phys. 125, 234308 (2006).
http://dx.doi.org/10.1063/1.2400235
26.
26. S. M. McClure, E. T. Barlow, M. C. Akin, D. J. Safarik, T. M. Truskett, and C. B. Mullins, J. Phys. Chem. B 110, 17987 (2006).
http://dx.doi.org/10.1021/jp063259y
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4793311 for several additional figures that are not necessary for an overall understanding of the scientific arguments presented here but may be of interest to some readers. Typically these figures make the same point as those in the main text but show results for other adsorbate molecules. [Supplementary Material]
28.
28. P. Lofgren, P. Ahlstrom, D. V. Chakarov, J. Lausmaa, and B. Kasemo, Surf. Sci. 367, L19 (1996).
http://dx.doi.org/10.1016/S0039-6028(96)00944-2
29.
29. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci. 367, L13 (1996).
http://dx.doi.org/10.1016/S0039-6028(96)00943-0
30.
30. W. B. Hillig and D. Turnbull, J. Chem. Phys. 24, 914 (1956).
http://dx.doi.org/10.1063/1.1742646
31.
31. H. R. Pruppacher, J. Chem. Phys. 47, 1807 (1967).
http://dx.doi.org/10.1063/1.1712169
32.
32. E. H. G. Backus, M. L. Grecea, A. W. Kleyn, and M. Bonn, Phys. Rev. Lett. 92, 236101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.236101
33.
33. Z. Dohnalek, G. A. Kimmel, R. L. Ciolli, K. P. Stevenson, R. S. Smith, and B. D. Kay, J. Chem. Phys. 112, 5932 (2000).
http://dx.doi.org/10.1063/1.481166
34.
34. D. J. Safarik and C. B. Mullins, J. Chem. Phys. 121, 6003 (2004).
http://dx.doi.org/10.1063/1.1779171
35.
35. Y. Sun, L. Zhu, K. L. Kearns, M. D. Ediger, and L. Yu, Proc. Natl. Acad. Sci. U.S.A. 108, 5990 (2011).
http://dx.doi.org/10.1073/pnas.1017995108
36.
36. A. Sakai, T. Tatsumi, and K. Ishida, J. Vac. Sci. Technol. A 11, 2950 (1993).
http://dx.doi.org/10.1116/1.578674
37.
37. R. S. Smith, J. Matthiesen, and B. D. Kay, J. Chem. Phys. 133, 174504 (2010).
http://dx.doi.org/10.1063/1.3497654
38.
38. J. Matthiesen, R. S. Smith, and B. D. Kay, J. Chem. Phys. 133, 174505 (2010).
http://dx.doi.org/10.1063/1.3497648
39.
39. R. S. Smith and B. D. Kay, Nature (London) 398, 788 (1999).
http://dx.doi.org/10.1038/19725
40.
40. R. S. Smith, J. Matthiesen, J. Knox, and B. D. Kay, J. Phys. Chem. A 115, 5908 (2011).
http://dx.doi.org/10.1021/jp110297q
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4793311
Loading
/content/aip/journal/jcp/138/10/10.1063/1.4793311
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/10/10.1063/1.4793311
2013-03-08
2014-08-01

Abstract

In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys.138, 104502 (Year: 2013)10.1063/1.4793312), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the “molecular volcano.” The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the “molecular volcano” desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/10/1.4793311.html;jsessionid=uc4r4hh5l949.x-aip-live-03?itemId=/content/aip/journal/jcp/138/10/10.1063/1.4793311&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The release of trapped gases from amorphous solid water films. I. “Top-down” crystallization-induced crack propagation probed using the molecular volcano
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4793311
10.1063/1.4793311
SEARCH_EXPAND_ITEM