1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The release of trapped gases from amorphous solid water films. II. “Bottom-up” induced desorption pathways
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/10/10.1063/1.4793312
1.
1. R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104501 (2013).
http://dx.doi.org/10.1063/1.4793311
2.
2. D. C. B. Whittet, Astrophys. J. 710, 1009 (2010).
http://dx.doi.org/10.1088/0004-637X/710/2/1009
3.
3. A. H. Delsemme, J. Phys. Chem. 87, 4214 (1983).
http://dx.doi.org/10.1021/j100244a047
4.
4. A. Barnun, G. Herman, D. Laufer, and M. L. Rappaport, Icarus 63, 317 (1985).
http://dx.doi.org/10.1016/0019-1035(85)90048-X
5.
5. A. Bar-Nun, J. Dror, E. Kochavi, and D. Laufer, Phys. Rev. B 35, 2427 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.2427
6.
6. D. Laufer, E. Kochavi, and A. Bar-Nun, Phys. Rev. B 36, 9219 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.9219
7.
7. A. Bar-Nun, I. Kleinfeld, and E. Kochavi, Phys. Rev. B 38, 7749 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.7749
8.
8. R. L. Hudson and B. Donn, Icarus 94, 326 (1991).
http://dx.doi.org/10.1016/0019-1035(91)90231-H
9.
9. P. Jenniskens and D. F. Blake, Science 265, 753 (1994).
http://dx.doi.org/10.1126/science.11539186
10.
10. P. Jenniskens and D. F. Blake, Astrophys. J. 473, 1104 (1996).
http://dx.doi.org/10.1086/178220
11.
11. L. J. Allamandola, M. P. Bernstein, S. A. Sandford, and R. L. Walker, Space Sci. Rev. 90, 219 (1999).
http://dx.doi.org/10.1023/A:1005210417396
12.
12. A. Bar-Nun and D. Laufer, Icarus 161, 157 (2003).
http://dx.doi.org/10.1016/S0019-1035(02)00016-7
13.
13. G. Notesco, A. Bar-Nun, and T. Owen, Icarus 162, 183 (2003).
http://dx.doi.org/10.1016/S0019-1035(02)00059-3
14.
14. D. J. Burke and W. A. Brown, Phys. Chem. Chem. Phys. 12, 5947 (2010).
http://dx.doi.org/10.1039/b917005g
15.
15. M. P. Collings, M. A. Anderson, R. Chen, J. W. Dever, S. Viti, D. A. Williams, and M. R. S. McCoustra, Mon. Not. R. Astron. Soc. 354, 1133 (2004).
http://dx.doi.org/10.1111/j.1365-2966.2004.08272.x
16.
16. R. Yokochi, U. Marboeuf, E. Quirico, and B. Schmitt, Icarus 218, 760 (2012).
http://dx.doi.org/10.1016/j.icarus.2012.02.003
17.
17. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Phys. Rev. Lett. 79, 909 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.909
18.
18. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci. 367, L13 (1996).
http://dx.doi.org/10.1016/S0039-6028(96)00943-0
19.
19. R. J. Speedy, P. G. Debenedetti, R. S. Smith, C. Huang, and B. D. Kay, J. Chem. Phys. 105, 240 (1996).
http://dx.doi.org/10.1063/1.471869
20.
20. R. S. Smith and B. D. Kay, Nature (London) 398, 788 (1999).
http://dx.doi.org/10.1038/19725
21.
21. R. S. Smith, J. Matthiesen, J. Knox, and B. D. Kay, J. Phys. Chem. A 115, 5908 (2011).
http://dx.doi.org/10.1021/jp110297q
22.
22. R. S. Smith, N. G. Petrik, G. A. Kimmel, and B. D. Kay, Acc. Chem. Res. 45, 33 (2012).
http://dx.doi.org/10.1021/ar200070w
23.
23. P. Ayotte, R. S. Smith, K. P. Stevenson, Z. Dohnalek, G. A. Kimmel, and B. D. Kay, J. Geophys. Res., [Planets] 106, 33387, doi:10.1029/2000JE001362 (2001).
http://dx.doi.org/10.1029/2000JE001362
24.
24. R. A. May, R. S. Smith, and B. D. Kay, Phys. Chem. Chem. Phys. 13, 19848 (2011).
http://dx.doi.org/10.1039/c1cp21855g
25.
25. R. A. May, R. S. Smith, and B. D. Kay, J. Phys. Chem. Lett. 3, 327 (2012).
http://dx.doi.org/10.1021/jz201648g
26.
26. E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
http://dx.doi.org/10.1063/1.1724033
27.
27. K. S. Pitzer, J. Chem. Phys. 7, 583 (1939).
http://dx.doi.org/10.1063/1.1750496
28.
28. R. S. Smith, J. Matthiesen, and B. D. Kay, J. Chem. Phys. 133, 174504 (2010).
http://dx.doi.org/10.1063/1.3497654
29.
29. J. Matthiesen, R. S. Smith, and B. D. Kay, J. Chem. Phys. 133, 174505 (2010).
http://dx.doi.org/10.1063/1.3497648
30.
30. R. S. Smith, J. Matthiesen, and B. D. Kay, J. Chem. Phys. 132, 124502 (2010).
http://dx.doi.org/10.1063/1.3361664
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4793312 for several additional figures that are not necessary for an overall understanding of the scientific arguments presented here but may be of interest to some readers. Typically these figures make the same point as those in the main text but show results for other adsorbate molecules. [Supplementary Material]
32.
32. K. P. Stevenson, G. A. Kimmel, Z. Dohnalek, R. S. Smith, and B. D. Kay, Science 283, 1505 (1999).
http://dx.doi.org/10.1126/science.283.5407.1505
33.
33. G. A. Kimmel, Z. Dohnalek, K. P. Stevenson, R. S. Smith, and B. D. Kay, J. Chem. Phys. 114, 5295 (2001).
http://dx.doi.org/10.1063/1.1350581
34.
34. G. A. Kimmel, K. P. Stevenson, Z. Dohnalek, R. S. Smith, and B. D. Kay, J. Chem. Phys. 114, 5284 (2001).
http://dx.doi.org/10.1063/1.1350580
35.
35. Z. Dohnalek, G. A. Kimmel, P. Ayotte, R. S. Smith, and B. D. Kay, J. Chem. Phys. 118, 364 (2003).
http://dx.doi.org/10.1063/1.1525805
36.
36. T. Zubkov, R. S. Smith, T. R. Engstrom, and B. D. Kay, J. Chem. Phys. 127, 184707 (2007).
http://dx.doi.org/10.1063/1.2790432
37.
37. T. Zubkov, R. S. Smith, T. R. Engstrom, and B. D. Kay, J. Chem. Phys. 127, 184708 (2007).
http://dx.doi.org/10.1063/1.2790433
38.
38. F. Cholette, T. Zubkov, R. S. Smith, Z. Dohnalek, B. D. Kay, and P. Ayotte, J. Phys. Chem. B 113, 4131 (2009).
http://dx.doi.org/10.1021/jp806738a
39.
39. R. S. Smith, T. Zubkov, Z. Dohnalek, and B. D. Kay, J. Phys. Chem. B 113, 4000 (2009).
http://dx.doi.org/10.1021/jp804902p
40.
40. Z. Dohnalek, G. A. Kimmel, D. E. McCready, J. S. Young, A. Dohnalkova, R. S. Smith, and B. D. Kay, J. Phys. Chem. B 106, 3526 (2002).
http://dx.doi.org/10.1021/jp013801c
41.
41. D. W. Flaherty, Z. Dohnalek, A. Dohnalkova, B. W. Arey, D. E. McCready, N. Ponnusamy, C. B. Mullins, and B. D. Kay, J. Phys. Chem. C 111, 4765 (2007).
http://dx.doi.org/10.1021/jp067641m
42.
42. D. W. Flaherty, R. A. May, S. P. Berglund, K. J. Stevenson, and C. B. Mullins, Chem. Mater. 22, 319 (2010).
http://dx.doi.org/10.1021/cm902184m
43.
43. R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, J. Phys. Chem. Lett. 1, 1264 (2010).
http://dx.doi.org/10.1021/jz1002428
44.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4793312
Loading
/content/aip/journal/jcp/138/10/10.1063/1.4793312
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/10/10.1063/1.4793312
2013-03-08
2014-07-31

Abstract

In this (Paper II) and the preceding companion paper (Paper I; R. May, R. Smith, and B. Kay, J. Chem. Phys.138, 104501 (Year: 2013)10.1063/1.4793311), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In Paper I, we focused on the low coverage regime where the release mechanism is controlled by crystallization-induced cracks formed in the ASW overlayer. In that regime, the results were largely independent of the particular gas underlayer. Here in Paper II, we focus on the high coverage regime where new desorption pathways become accessible prior to ASW crystallization. In contrast to the results for the low coverage regime (Paper I), the release mechanism is a function of the multilayer thickness and composition, displaying dramatically different behavior between Ar, Kr, Xe, CH4, N2, O2, and CO. Two primary desorption pathways are observed. The first occurs between 100 and 150 K and manifests itself as sharp, extremely narrow desorption peaks. Temperature programmed desorption is utilized to show that these abrupt desorption bursts are due to pressure induced structural failure of the ASW overlayer. The second pathway occurs at low temperature (typically <100 K) where broad desorption peaks are observed. Desorption through this pathway is attributed to diffusion through pores formed during ASW deposition. The extent of desorption and the line shape of the low temperature desorption peak are dependent on the substrate on which the gas underlayer is deposited. Angle dependent ballistic deposition of ASW is used to vary the porosity of the overlayer and strongly supports the hypothesis that the low temperature desorption pathway is due to porosity that is templated into the ASW overlayer by the underlayer during deposition.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/10/1.4793312.html;jsessionid=dpknlelatqe03.x-aip-live-06?itemId=/content/aip/journal/jcp/138/10/10.1063/1.4793312&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The release of trapped gases from amorphous solid water films. II. “Bottom-up” induced desorption pathways
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4793312
10.1063/1.4793312
SEARCH_EXPAND_ITEM