1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The release of trapped gases from amorphous solid water films. II. “Bottom-up” induced desorption pathways
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/10/10.1063/1.4793312
1.
1. R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104501 (2013).
http://dx.doi.org/10.1063/1.4793311
2.
2. D. C. B. Whittet, Astrophys. J. 710, 1009 (2010).
http://dx.doi.org/10.1088/0004-637X/710/2/1009
3.
3. A. H. Delsemme, J. Phys. Chem. 87, 4214 (1983).
http://dx.doi.org/10.1021/j100244a047
4.
4. A. Barnun, G. Herman, D. Laufer, and M. L. Rappaport, Icarus 63, 317 (1985).
http://dx.doi.org/10.1016/0019-1035(85)90048-X
5.
5. A. Bar-Nun, J. Dror, E. Kochavi, and D. Laufer, Phys. Rev. B 35, 2427 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.2427
6.
6. D. Laufer, E. Kochavi, and A. Bar-Nun, Phys. Rev. B 36, 9219 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.9219
7.
7. A. Bar-Nun, I. Kleinfeld, and E. Kochavi, Phys. Rev. B 38, 7749 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.7749
8.
8. R. L. Hudson and B. Donn, Icarus 94, 326 (1991).
http://dx.doi.org/10.1016/0019-1035(91)90231-H
9.
9. P. Jenniskens and D. F. Blake, Science 265, 753 (1994).
http://dx.doi.org/10.1126/science.11539186
10.
10. P. Jenniskens and D. F. Blake, Astrophys. J. 473, 1104 (1996).
http://dx.doi.org/10.1086/178220
11.
11. L. J. Allamandola, M. P. Bernstein, S. A. Sandford, and R. L. Walker, Space Sci. Rev. 90, 219 (1999).
http://dx.doi.org/10.1023/A:1005210417396
12.
12. A. Bar-Nun and D. Laufer, Icarus 161, 157 (2003).
http://dx.doi.org/10.1016/S0019-1035(02)00016-7
13.
13. G. Notesco, A. Bar-Nun, and T. Owen, Icarus 162, 183 (2003).
http://dx.doi.org/10.1016/S0019-1035(02)00059-3
14.
14. D. J. Burke and W. A. Brown, Phys. Chem. Chem. Phys. 12, 5947 (2010).
http://dx.doi.org/10.1039/b917005g
15.
15. M. P. Collings, M. A. Anderson, R. Chen, J. W. Dever, S. Viti, D. A. Williams, and M. R. S. McCoustra, Mon. Not. R. Astron. Soc. 354, 1133 (2004).
http://dx.doi.org/10.1111/j.1365-2966.2004.08272.x
16.
16. R. Yokochi, U. Marboeuf, E. Quirico, and B. Schmitt, Icarus 218, 760 (2012).
http://dx.doi.org/10.1016/j.icarus.2012.02.003
17.
17. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Phys. Rev. Lett. 79, 909 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.909
18.
18. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci. 367, L13 (1996).
http://dx.doi.org/10.1016/S0039-6028(96)00943-0
19.
19. R. J. Speedy, P. G. Debenedetti, R. S. Smith, C. Huang, and B. D. Kay, J. Chem. Phys. 105, 240 (1996).
http://dx.doi.org/10.1063/1.471869
20.
20. R. S. Smith and B. D. Kay, Nature (London) 398, 788 (1999).
http://dx.doi.org/10.1038/19725
21.
21. R. S. Smith, J. Matthiesen, J. Knox, and B. D. Kay, J. Phys. Chem. A 115, 5908 (2011).
http://dx.doi.org/10.1021/jp110297q
22.
22. R. S. Smith, N. G. Petrik, G. A. Kimmel, and B. D. Kay, Acc. Chem. Res. 45, 33 (2012).
http://dx.doi.org/10.1021/ar200070w
23.
23. P. Ayotte, R. S. Smith, K. P. Stevenson, Z. Dohnalek, G. A. Kimmel, and B. D. Kay, J. Geophys. Res., [Planets] 106, 33387, doi:10.1029/2000JE001362 (2001).
http://dx.doi.org/10.1029/2000JE001362
24.
24. R. A. May, R. S. Smith, and B. D. Kay, Phys. Chem. Chem. Phys. 13, 19848 (2011).
http://dx.doi.org/10.1039/c1cp21855g
25.
25. R. A. May, R. S. Smith, and B. D. Kay, J. Phys. Chem. Lett. 3, 327 (2012).
http://dx.doi.org/10.1021/jz201648g
26.
26. E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
http://dx.doi.org/10.1063/1.1724033
27.
27. K. S. Pitzer, J. Chem. Phys. 7, 583 (1939).
http://dx.doi.org/10.1063/1.1750496
28.
28. R. S. Smith, J. Matthiesen, and B. D. Kay, J. Chem. Phys. 133, 174504 (2010).
http://dx.doi.org/10.1063/1.3497654
29.
29. J. Matthiesen, R. S. Smith, and B. D. Kay, J. Chem. Phys. 133, 174505 (2010).
http://dx.doi.org/10.1063/1.3497648
30.
30. R. S. Smith, J. Matthiesen, and B. D. Kay, J. Chem. Phys. 132, 124502 (2010).
http://dx.doi.org/10.1063/1.3361664
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4793312 for several additional figures that are not necessary for an overall understanding of the scientific arguments presented here but may be of interest to some readers. Typically these figures make the same point as those in the main text but show results for other adsorbate molecules. [Supplementary Material]
32.
32. K. P. Stevenson, G. A. Kimmel, Z. Dohnalek, R. S. Smith, and B. D. Kay, Science 283, 1505 (1999).
http://dx.doi.org/10.1126/science.283.5407.1505
33.
33. G. A. Kimmel, Z. Dohnalek, K. P. Stevenson, R. S. Smith, and B. D. Kay, J. Chem. Phys. 114, 5295 (2001).
http://dx.doi.org/10.1063/1.1350581
34.
34. G. A. Kimmel, K. P. Stevenson, Z. Dohnalek, R. S. Smith, and B. D. Kay, J. Chem. Phys. 114, 5284 (2001).
http://dx.doi.org/10.1063/1.1350580
35.
35. Z. Dohnalek, G. A. Kimmel, P. Ayotte, R. S. Smith, and B. D. Kay, J. Chem. Phys. 118, 364 (2003).
http://dx.doi.org/10.1063/1.1525805
36.
36. T. Zubkov, R. S. Smith, T. R. Engstrom, and B. D. Kay, J. Chem. Phys. 127, 184707 (2007).
http://dx.doi.org/10.1063/1.2790432
37.
37. T. Zubkov, R. S. Smith, T. R. Engstrom, and B. D. Kay, J. Chem. Phys. 127, 184708 (2007).
http://dx.doi.org/10.1063/1.2790433
38.
38. F. Cholette, T. Zubkov, R. S. Smith, Z. Dohnalek, B. D. Kay, and P. Ayotte, J. Phys. Chem. B 113, 4131 (2009).
http://dx.doi.org/10.1021/jp806738a
39.
39. R. S. Smith, T. Zubkov, Z. Dohnalek, and B. D. Kay, J. Phys. Chem. B 113, 4000 (2009).
http://dx.doi.org/10.1021/jp804902p
40.
40. Z. Dohnalek, G. A. Kimmel, D. E. McCready, J. S. Young, A. Dohnalkova, R. S. Smith, and B. D. Kay, J. Phys. Chem. B 106, 3526 (2002).
http://dx.doi.org/10.1021/jp013801c
41.
41. D. W. Flaherty, Z. Dohnalek, A. Dohnalkova, B. W. Arey, D. E. McCready, N. Ponnusamy, C. B. Mullins, and B. D. Kay, J. Phys. Chem. C 111, 4765 (2007).
http://dx.doi.org/10.1021/jp067641m
42.
42. D. W. Flaherty, R. A. May, S. P. Berglund, K. J. Stevenson, and C. B. Mullins, Chem. Mater. 22, 319 (2010).
http://dx.doi.org/10.1021/cm902184m
43.
43. R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, J. Phys. Chem. Lett. 1, 1264 (2010).
http://dx.doi.org/10.1021/jz1002428
44.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4793312
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

TPD spectra for 5 ML of Ar (bottom trace) underneath 300 ML of ASW (upper trace) at a heating rate of 1 K/s. The Ar spectrum has three desorption features labeled “burst,” “volcano,” and “trapped.” The Ar “burst” peak is coincident with a sharp desorption peak in the ASW spectrum which is accounts for the desorption of ∼20% of the ASW overlayer.

Image of FIG. 2.

Click to view

FIG. 2.

TPD spectra for (a) 5 ML and (b) 50 ML of Ar (gray line), Kr (red line), and Xe (green line) beneath 300 ML ASW heated at a rate of 1 K/s. (c) The TPD spectra from (b) plotted versus the reduced temperature, T/T c , which was obtained by dividing the temperature for each gas by its respective T c (150.87 K for Ar, 209.41 K for Kr, and 289.77 K for Xe). Rescaling aligns the most prominent peaks for Ar and Kr to the same reduced temperature (vertical dashed line) corresponding to a pressure of ∼2.5 atm.

Image of FIG. 3.

Click to view

FIG. 3.

The trapped fraction of Ar (○), Kr (▵) and Xe (⋄) versus underlayer thickness for a fixed 300 ML ASW overlayer. (Inset) An expanded view of the same data from 0 to 2 ML which shows that between 0.5 and 1.5 ML the trapped fraction is relatively insensitive to the underlayer thickness.

Image of FIG. 4.

Click to view

FIG. 4.

TPD spectra (a) Ar, (b) Kr, (c) Xe, (d) CH4, (e) N2, (f) O2 and (g) CO for underlayer thicknesses of 1, 5, 10, 20, 30, 40 and 50 ML and a 300 ML ASW overlayer. The heating rate was 1 K/s. The spectra for atomic underlayers display primarily narrow burst peaks that increase in number and intensity with underlayer thickness. The molecular species have a single broad low temperature desorption feature that shifts to low temperature with underlayer thickness.

Image of FIG. 5.

Click to view

FIG. 5.

Comparison of two TPD experiments performed at a heating rate of β = 1 K/s. The upper trace is offset by 1.5 ML/s and the peak at 130 K has been multiplied by 0.5. The upper spectrum is for 5 ML of Ar is deposited on graphene and covered by 340 ML of ASW. This spectrum displays a characteristic “burst” peak at 130 K. The lower spectra are from an experiment where 5 ML of Ar is co-dosed with 3 ML of O2 and covered by 340 ML of ASW. In these spectra no “burst” peak is observed, but rather both O2 and Ar desorb in a broad low temperature feature centered around 68 K.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Plot of the low temperature region of a series of TPD spectra for 50 ML O2 beneath thicknesses of ASW from 50 to 2000 ML. The heating rate was 1 K/s. (b) Arrhenius plot of the quantity, βL 2/T 2 Peak (symbols), where β is the heating, L is the ASW overlayer thickness, and T Peak is the peak temperature of the low temperature desorption feature for the TPD spectra in (a) (1 K/s) and analogous sets of TPD spectra with heating rates of 0.1, 0.2, 0.5, and 2 K/s. The quantity βL 2/T 2 Peak is proportional to the diffusivity of the gas through the overlayer (see Eq. (1) in the text). A fit to the β = 1 K/s data set for ASW thicknesses up to 300 ML is given by the solid line and yields Arrhenius diffusion parameters of ν = 2.5 × 10−8 cm2/s and E = 3.7 kJ/mol. (c) Simulated TPD spectra at β = 1 K/s assuming a diffusion model for a variety of overlayer thicknesses using the Arrhenius parameters obtained in (b). The “stars” demark the experimental peak temperatures for the corresponding overlayer thicknesses from (a).

Image of FIG. 7.

Click to view

FIG. 7.

(a) Plot of the desorption peak temperature versus ASW overlayer thickness for 50 ML of CO, O2, N2 and CH4 on graphene and heated at a rate of 1 K/s. The dashed lines are diffusion model predictions using parameters fit to the overlayer data up to 300 ML for each gas. (b) Plot of the desorption peak temperature data in (a) rescaled by the critical temperature, T Peak /T c . The horizontal dashed lines demark values of T Peak /T c where the CO and CH4 data and the O2 and N2 data appear to converge at large ASW overlayer thicknesses. These reduced temperatures correspond to pressures of 0.4 and 0.004 atm.

Image of FIG. 8.

Click to view

FIG. 8.

TPD spectra for 1, 20, and 50 ML of Ar ((a), (c), and (e), respectively) and O2 ((b), (d), and (f), respectively) deposited on graphene (solid lines) and 2 ML of ASW on top of graphene (dashed lines), and covered by 300 ML of ASW. The heating rate was 1 K/s. The TPD spectra for both gases are dependent on the underlying substrate.

Image of FIG. 9.

Click to view

FIG. 9.

Desorption of (a) 2 ML Ar, (b) 2 ML O2, (c) 20 ML Ar and (d) 20 ML of O2 from graphene (solid) or ASW (dashed) deposited without an ASW overlayer. The heating rate was 1 K/s. Very different desorption behavior is observed for thin Ar and O2 layers on graphene versus ASW while the multilayer desorption temperature is substrate independent.

Image of FIG. 10.

Click to view

FIG. 10.

TPD spectra of 50 ML Ar deposited on graphene with 500 ML ASW deposited above the Ar layer at incident deposition angles of 0° (top), 5°, 10°, 15° and 20° (bottom). The Y-axis scale for the first three spectra is identical to emphasize the decrease in magnitude of the sharp desorption features with ASW deposition angle.

Image of FIG. 11.

Click to view

FIG. 11.

Desorption of 50 ML of (a) Ar and (b) O2 from graphene after being covered by 150 ML of ASW deposited at various angles of incidence. The low temperature desorption peak for 50 ML of the respective gases from graphene is marked by a vertical dashed line. (c) Comparison of the low temperature peaks in (a) and (b) for Ar (squares) and O2 (circles).

Loading

Article metrics loading...

/content/aip/journal/jcp/138/10/10.1063/1.4793312
2013-03-08
2014-04-20

Abstract

In this (Paper II) and the preceding companion paper (Paper I; R. May, R. Smith, and B. Kay, J. Chem. Phys.138, 104501 (Year: 2013)10.1063/1.4793311), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In Paper I, we focused on the low coverage regime where the release mechanism is controlled by crystallization-induced cracks formed in the ASW overlayer. In that regime, the results were largely independent of the particular gas underlayer. Here in Paper II, we focus on the high coverage regime where new desorption pathways become accessible prior to ASW crystallization. In contrast to the results for the low coverage regime (Paper I), the release mechanism is a function of the multilayer thickness and composition, displaying dramatically different behavior between Ar, Kr, Xe, CH4, N2, O2, and CO. Two primary desorption pathways are observed. The first occurs between 100 and 150 K and manifests itself as sharp, extremely narrow desorption peaks. Temperature programmed desorption is utilized to show that these abrupt desorption bursts are due to pressure induced structural failure of the ASW overlayer. The second pathway occurs at low temperature (typically <100 K) where broad desorption peaks are observed. Desorption through this pathway is attributed to diffusion through pores formed during ASW deposition. The extent of desorption and the line shape of the low temperature desorption peak are dependent on the substrate on which the gas underlayer is deposited. Angle dependent ballistic deposition of ASW is used to vary the porosity of the overlayer and strongly supports the hypothesis that the low temperature desorption pathway is due to porosity that is templated into the ASW overlayer by the underlayer during deposition.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/10/1.4793312.html;jsessionid=84jntkg2imb1c.x-aip-live-02?itemId=/content/aip/journal/jcp/138/10/10.1063/1.4793312&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The release of trapped gases from amorphous solid water films. II. “Bottom-up” induced desorption pathways
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4793312
10.1063/1.4793312
SEARCH_EXPAND_ITEM