1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: An efficient analytic gradient theory for approximate spin projection methods
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/10/10.1063/1.4795429
1.
1. J. A. Pople, P. M. W. Gill, and N. C. Handy, Int. J. Quantum Chem. 56, 303 (1995).
http://dx.doi.org/10.1002/qua.560560414
2.
2. L. Noodleman and D. Case, Adv. Inorg. Chem. 38, 423 (1992);
http://dx.doi.org/10.1016/S0898-8838(08)60070-7
2.T. Lovell, F. Himo, W. Han, and L. Noodleman, Coord. Chem. Rev. 238, 211 (2003);
http://dx.doi.org/10.1016/S0010-8545(02)00331-4
2.E. Ruiz, Principles and Applications of Density Functional Theory in Inorganic Chemistry II, Structure and Bonding Vol. 113 (Springer, 2004), pp. 71102;
2.E. Davidson and A. Clark, Int. J. Quantum Chem. 103, 1 (2005);
http://dx.doi.org/10.1002/qua.20478
2.C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757 (2009);
http://dx.doi.org/10.1039/b907148b
2.F. Neese, W. Ames, G. Christian, M. Kampa, D. G. Liakos, D. A. Pantazis, M. Roemelt, P. Surawatanawong, and S. Ye, Adv. Inorg. Chem. 62, 301 (2010).
http://dx.doi.org/10.1016/S0898-8838(10)62008-9
3.
3. J. L. Sonnenberg, H. B. Schlegel, and H. P. Hratchian, “Spin contamination in inorganic chemistry calculations,” in Computational Inorganic and Bioinorganic Chemistry, edited by E. I. Solomon, R. B. King, and R. A. Scott (Wiley, Chichester, U.K., 2009), pp. 173186.
4.
4. K. Yamaguchi, F. Jensen, A. Dorigo, and K. N. Houk, Chem. Phys. Lett. 149, 537 (1988);
http://dx.doi.org/10.1016/0009-2614(88)80378-6
4.Y. Kitagawa, T. Saito, M. Ito, M. Shoji, K. Koizumi, S. Yamanaka, T. Kawakami, M. Okumura, and K. Yamaguchi, Chem. Phys. Lett. 442, 445 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.05.082
5.
5. T. Saito and W. Thiel, J. Phys. Chem. A 116, 10864 (2012).
http://dx.doi.org/10.1021/jp308916s
6.
6. H. P. Hratchian, and H. B. Schlegel, in Theory and Applications of Computational Chemistry: The First Forty Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), pp. 195249.
7.
7. N. C. Handy and H. F. Schaefer III, J. Chem. Phys. 81, 5031 (1984).
http://dx.doi.org/10.1063/1.447489
8.
8. J. Wang, A. D. Becke, and V. H. Smith Jr., J. Chem. Phys. 102, 3477 (1995);
http://dx.doi.org/10.1063/1.468585
8.J. M. Wittbrodt and H. B. Schlegel, J. Chem. Phys. 105, 6574 (1996);
http://dx.doi.org/10.1063/1.472497
8.A. J. Cohn, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 126, 214104 (2007).
http://dx.doi.org/10.1063/1.2737773
9.
9. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
10.
10. P. Pulay, Mol. Phys. 17, 197 (1969);
http://dx.doi.org/10.1080/00268976900100941
10.P. Pulay, Mol. Phys. 18, 473 (1970);
http://dx.doi.org/10.1080/00268977000100541
10.P. Pulay, Mol. Phys. 21, 329 (1971);
http://dx.doi.org/10.1080/00268977100101451
10.P. Pulay, in Modern Electronic Structure Theory, edited by D. R. Yarkony (World Scientific, Singapore, 1995), p. 1191.
11.
11. J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem., Quantum Chem. Symp. 13, 225 (1979).
http://dx.doi.org/10.1002/qua.560160825
12.
12. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
http://dx.doi.org/10.1021/j100180a030
13.
13. M. J. Frisch, G. W. Trucks, and H. B. Schlegel et al., GAUSSIAN Development Version, Revision H.28, Gaussian, Inc., Wallingford, CT, 2012.
14.
14. R. Seeger and J. A. Pople, J. Chem. Phys. 66, 3045 (1977);
http://dx.doi.org/10.1063/1.434318
14.R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. 104, 9047 (1996).
http://dx.doi.org/10.1063/1.471637
15.
15. A. D. Becke, Phys. Rev. A 38, 3098 (1988);
http://dx.doi.org/10.1103/PhysRevA.38.3098
15.A. D. Becke, J. Chem. Phys. 98, 5648 (1993);
http://dx.doi.org/10.1063/1.464913
15.C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988);
http://dx.doi.org/10.1103/PhysRevB.37.785
15.A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980);
http://dx.doi.org/10.1063/1.438980
15.K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980);
http://dx.doi.org/10.1063/1.438955
15.T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989);
http://dx.doi.org/10.1063/1.456153
15.A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).
http://dx.doi.org/10.1063/1.463096
16.
16. L. Noodleman, J. Chem. Phys. 74, 5737 (1981);
http://dx.doi.org/10.1063/1.440939
16.L. Noodleman and E. R. Davidson, Chem. Phys. 109, 131 (1986).
http://dx.doi.org/10.1016/0301-0104(86)80192-6
17.
17. J. J. W. McDouall and H. B. Schlegel, J. Chem. Phys. 90, 2363 (1989).
http://dx.doi.org/10.1063/1.455978
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4795429
Loading
/content/aip/journal/jcp/138/10/10.1063/1.4795429
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/10/10.1063/1.4795429
2013-03-14
2014-07-24

Abstract

Spin polarized and broken symmetry density functional theory are popular approaches for treating the electronic structure of open shell systems. However, spin contamination can significantly affect the quality of predicted geometries and properties. One scheme for addressing this concern in studies involving broken–symmetry states is the approximate projection method developed by Yamaguchi and co–workers. Critical to the exploration of potential energy surfaces and the study of properties using this method will be an efficient analytic gradient theory. This communication introduces such a theory formulated, for the first time, within the framework of general post–self consistent field (SCF) derivative theory. Importantly, the approach taken here avoids the need to explicitly solve for molecular orbital derivatives of each nuclear displacement perturbation, as has been used in a recent implementation. Instead, the well–known z–vector scheme is employed and only one SCF response equation is required.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/10/1.4795429.html;jsessionid=7qli0fwv77j4.x-aip-live-02?itemId=/content/aip/journal/jcp/138/10/10.1063/1.4795429&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: An efficient analytic gradient theory for approximate spin projection methods
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/10/10.1063/1.4795429
10.1063/1.4795429
SEARCH_EXPAND_ITEM