NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Communication: An efficient analytic gradient theory for approximate spin projection methods
Rent this article for
Access full text Article
1. J. A. Pople, P. M. W. Gill, and N. C. Handy, Int. J. Quantum Chem. 56, 303 (1995).
2. L. Noodleman and D. Case, Adv. Inorg. Chem. 38, 423 (1992);
2.T. Lovell, F. Himo, W. Han, and L. Noodleman, Coord. Chem. Rev. 238, 211 (2003);
2.E. Ruiz, Principles and Applications of Density Functional Theory in Inorganic Chemistry II, Structure and Bonding Vol. 113 (Springer, 2004), pp. 71102;
2.E. Davidson and A. Clark, Int. J. Quantum Chem. 103, 1 (2005);
2.C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757 (2009);
2.F. Neese, W. Ames, G. Christian, M. Kampa, D. G. Liakos, D. A. Pantazis, M. Roemelt, P. Surawatanawong, and S. Ye, Adv. Inorg. Chem. 62, 301 (2010).
3. J. L. Sonnenberg, H. B. Schlegel, and H. P. Hratchian, “Spin contamination in inorganic chemistry calculations,” in Computational Inorganic and Bioinorganic Chemistry, edited by E. I. Solomon, R. B. King, and R. A. Scott (Wiley, Chichester, U.K., 2009), pp. 173186.
4. K. Yamaguchi, F. Jensen, A. Dorigo, and K. N. Houk, Chem. Phys. Lett. 149, 537 (1988);
4.Y. Kitagawa, T. Saito, M. Ito, M. Shoji, K. Koizumi, S. Yamanaka, T. Kawakami, M. Okumura, and K. Yamaguchi, Chem. Phys. Lett. 442, 445 (2007).
5. T. Saito and W. Thiel, J. Phys. Chem. A 116, 10864 (2012).
6. H. P. Hratchian, and H. B. Schlegel, in Theory and Applications of Computational Chemistry: The First Forty Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), pp. 195249.
7. N. C. Handy and H. F. Schaefer III, J. Chem. Phys. 81, 5031 (1984).
8. J. Wang, A. D. Becke, and V. H. Smith Jr., J. Chem. Phys. 102, 3477 (1995);
8.J. M. Wittbrodt and H. B. Schlegel, J. Chem. Phys. 105, 6574 (1996);
8.A. J. Cohn, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 126, 214104 (2007).
9. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
10. P. Pulay, Mol. Phys. 17, 197 (1969);
10.P. Pulay, Mol. Phys. 18, 473 (1970);
10.P. Pulay, Mol. Phys. 21, 329 (1971);
10.P. Pulay, in Modern Electronic Structure Theory, edited by D. R. Yarkony (World Scientific, Singapore, 1995), p. 1191.
11. J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem., Quantum Chem. Symp. 13, 225 (1979).
12. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
13. M. J. Frisch, G. W. Trucks, and H. B. Schlegel et al., GAUSSIAN Development Version, Revision H.28, Gaussian, Inc., Wallingford, CT, 2012.
14. R. Seeger and J. A. Pople, J. Chem. Phys. 66, 3045 (1977);
14.R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. 104, 9047 (1996).
15. A. D. Becke, Phys. Rev. A 38, 3098 (1988);
15.A. D. Becke, J. Chem. Phys. 98, 5648 (1993);
15.C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988);
15.A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980);
15.K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980);
15.T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989);
15.A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).
16. L. Noodleman, J. Chem. Phys. 74, 5737 (1981);
16.L. Noodleman and E. R. Davidson, Chem. Phys. 109, 131 (1986).
17. J. J. W. McDouall and H. B. Schlegel, J. Chem. Phys. 90, 2363 (1989).

Data & Media loading...


Article metrics loading...



Spin polarized and broken symmetry density functional theory are popular approaches for treating the electronic structure of open shell systems. However, spin contamination can significantly affect the quality of predicted geometries and properties. One scheme for addressing this concern in studies involving broken–symmetry states is the approximate projection method developed by Yamaguchi and co–workers. Critical to the exploration of potential energy surfaces and the study of properties using this method will be an efficient analytic gradient theory. This communication introduces such a theory formulated, for the first time, within the framework of general post–self consistent field (SCF) derivative theory. Importantly, the approach taken here avoids the need to explicitly solve for molecular orbital derivatives of each nuclear displacement perturbation, as has been used in a recent implementation. Instead, the well–known z–vector scheme is employed and only one SCF response equation is required.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: An efficient analytic gradient theory for approximate spin projection methods