1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Microscopic theory of singlet exciton fission. I. General formulation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/11/10.1063/1.4794425
1.
1. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
2.
2. A. De Vos, J. Phys. D 13, 839 (1980).
http://dx.doi.org/10.1088/0022-3727/13/5/018
3.
3. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
http://dx.doi.org/10.1126/science.1141711
4.
4. R. Ross and A. Nozik, J. Appl. Phys. 53, 3813 (1982).
http://dx.doi.org/10.1063/1.331124
5.
5. Y. Rosenwaks, M. C. Hanna, D. H. Levi, D. M. Szmyd, R. K. Ahrenkiel, and A. J. Nozik, Phys. Rev. B 48, 14675 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.14675
6.
6. A. J. Nozik, Annu. Rev. Phys. Chem. 52, 193 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.193
7.
7. J. H. Werner, S. Kolodinksi, and H. J. Queisser, Phys. Rev. Lett. 72, 3851 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.3851
8.
8. O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, Science 334, 1530 (2011).
http://dx.doi.org/10.1126/science.1209845
9.
9. I. Paci, J. C. Johnson, X. Chen, G. Rana, D. Popović, D. E. David, A. J. Nozik, M. A. Ratner, and J. Michl, J. Am. Chem. Soc. 128, 16546 (2006).
http://dx.doi.org/10.1021/ja063980h
10.
10. P. J. Jadhav, A. Mohanty, J. Sussman, J. Lee, and M. A. Baldo, Nano Lett. 11, 1495 (2011).
http://dx.doi.org/10.1021/nl104202j
11.
11. S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider, J. Chem. Phys. 42, 330 (1965).
http://dx.doi.org/10.1063/1.1695695
12.
12. C. E. Swenberg and W. T. Stacy, Chem. Phys. Lett. 2, 327 (1968).
http://dx.doi.org/10.1016/0009-2614(68)80087-9
13.
13. N. Geacintov, M. Pope, and F. E. Vogel III, Phys. Rev. Lett. 22, 593 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.593
14.
14. R. E. Merrifield, P. Avakian, and R. P. Groff, Chem. Phys. Lett. 3, 386 (1969).
http://dx.doi.org/10.1016/0009-2614(69)80144-2
15.
15. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010).
http://dx.doi.org/10.1021/cr1002613
16.
16. J. C. Johnson, A. J. Nozik, and J. Michl, J. Am. Chem. Soc. 132, 16302 (2010).
http://dx.doi.org/10.1021/ja104123r
17.
17. J. J. Burdett, D. Gosztola, and C. J. Bardeen, J. Chem. Phys. 135, 214508 (2011).
http://dx.doi.org/10.1063/1.3664630
18.
18. J. J. Burdett and C. J. Bardeen, J. Am. Chem. Soc. 134, 8597 (2012).
http://dx.doi.org/10.1021/ja301683w
19.
19. W.-L. Chan, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-Avila, and X.-Y. Zhu, Science 334, 1541 (2011).
http://dx.doi.org/10.1126/science.1213986
20.
20. M. W. B. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo, and R. H. Friend, J. Am. Chem. Soc. 133, 11830 (2011).
http://dx.doi.org/10.1021/ja201688h
21.
21. L. Ma, K. Zhang, C. Kloc, H. Sun, M. E. Michel-Beyerle, and G. G. Gurzadyan, Phys. Chem. Chem. Phys. 14, 8307 (2012).
http://dx.doi.org/10.1039/c2cp40449d
22.
22. S. T. Roberts, R. E. McAnally, J. N. Mastron, D. H. Webber, M. T. Whited, R. L. Brutchey, M. E. Thompson, and S. E. Bradforth, J. Am. Chem. Soc. 134, 6388 (2012).
http://dx.doi.org/10.1021/ja300504t
23.
23. C. Wang and M. J. Tauber, J. Am. Chem. Soc. 132, 13988 (2010).
http://dx.doi.org/10.1021/ja102851m
24.
24. C. Wang, D. E. Schlamadinger, V. Desair, and M. J. Tauber, Chem. Phys. Chem. 12, 2891 (2011).
http://dx.doi.org/10.1002/cphc.201100571
25.
25. C. Wang, M. Angelella, C.-H. Kuo, and M. J. Tauber, Proc. SPIE 8459, 845905 (2012).
http://dx.doi.org/10.1117/12.958612
26.
26. C. Ramanan, A. L. Smeigh, J. E. Anthony, T. J. Marks, and M. R. Wasielewski, J. Am. Chem. Soc. 134, 386 (2012).
http://dx.doi.org/10.1021/ja2080482
27.
27. P. M. Zimmerman, Z. Zhang, and C. B. Musgrave, Nat. Chem. 2, 648 (2010).
http://dx.doi.org/10.1038/nchem.694
28.
28. P. M. Zimmerman, F. Bell, D. Casanova, and M. Head-Gordon, J. Am. Chem. Soc. 133, 19944 (2011).
http://dx.doi.org/10.1021/ja208431r
29.
29. T. Minami and M. Nakano, J. Phys. Chem. Lett. 3, 145 (2012).
http://dx.doi.org/10.1021/jz2015346
30.
30. S. Ito, T. Minami, and M. Nakano, J. Phys. Chem. C 116, 19729 (2012).
http://dx.doi.org/10.1021/jp3072684
31.
31. T. Minami, S. Ito, and M. Nakano, J. Phys. Chem. Lett. 3, 2719 (2012).
http://dx.doi.org/10.1021/jz3011749
32.
32. R. W. A. Havenith, H. D. de Grier, and R. Broer, Mol. Phys. 110, 2445 (2012).
http://dx.doi.org/10.1080/00268976.2012.695810
33.
33. W.-L. Chan, M. Ligges, and X.-Y. Zhu, Nat. Chem. 4, 840 (2012).
http://dx.doi.org/10.1038/nchem.1436
34.
34. E. C. Greyson, B. R. Stepp, X. Chen, A. F. Schwerin, I. Paci, M. B. Smith, A. Akdag, J. C. Johnson, A. J. Nozik, J. Michl, and M. A. Ratner, J. Phys. Chem. B 114, 14223 (2010).
http://dx.doi.org/10.1021/jp909002d
35.
35. E. C. Greyson, J. Vura-Weis, J. Michl, and M. A. Ratner, J. Phys. Chem. B 114, 14168 (2010).
http://dx.doi.org/10.1021/jp907392q
36.
36. P. Teichen and J. D. Eaves, J. Phys. Chem. B 116, 11473 (2012).
http://dx.doi.org/10.1021/jp208905k
37.
37. A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009).
http://dx.doi.org/10.1063/1.3155372
38.
38. A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. U.S.A. 106, 17255 (2009).
http://dx.doi.org/10.1073/pnas.0908989106
39.
39. P. Rebentrost, R. Chakraborty, and A. Aspuru-Guzik, J. Chem. Phys. 131, 184102 (2009).
http://dx.doi.org/10.1063/1.3259838
40.
40. T. van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng, and Q. Wu, Annu. Rev. Phys. Chem. 61, 149 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103324
41.
41. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, Nano Lett. 5, 865 (2005).
http://dx.doi.org/10.1021/nl0502672
42.
42. A. Shabaev, A. L. Efros, and A. J. Nozik, Nano Lett. 6, 2856 (2006).
http://dx.doi.org/10.1021/nl062059v
43.
43. M. S. Gordon, D. G. Fedorov, S. R. Pruitt, and L. V. Slipchenko, Chem. Rev. 112, 632 (2012).
http://dx.doi.org/10.1021/cr200093j
44.
44. J. M. Foster and S. F. Boys, Rev. Mod. Phys. 32, 300 (1960).
http://dx.doi.org/10.1103/RevModPhys.32.300
45.
45. C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35, 457 (1963).
http://dx.doi.org/10.1103/RevModPhys.35.457
46.
46. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (Dover, 2008).
47.
47. R. D. Harcourt, G. D. Scholes, and K. P. Ghiggino, J. Chem. Phys. 101, 10521 (1994).
http://dx.doi.org/10.1063/1.467869
48.
48. G. D. Scholes, R. D. Harcourt, and K. P. Ghiggino, J. Chem. Phys. 102, 9574 (1995).
http://dx.doi.org/10.1063/1.468773
49.
49. T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, J. Chem. Phys. 138, 114103 (2013).
http://dx.doi.org/10.1063/1.4794427
50.
50. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01149-5
51.
51. M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094449
52.
52. M. E. Casida and M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143803
53.
53. M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5390
54.
54. M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.4927
55.
55. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.601
56.
56. P. Romaniello, D. Sangalli, J. A. Berger, F. Sottile, L. G. Molinari, L. Reining, and G. Onida, J. Chem. Phys. 130, 044108 (2009).
http://dx.doi.org/10.1063/1.3065669
57.
57. D. Sangalli, P. Romaniello, G. Onida, and A. Marini, J. Chem. Phys. 134, 034115 (2011).
http://dx.doi.org/10.1063/1.3518705
58.
58. D. Biermann and W. Schmidt, J. Am. Chem. Soc. 102, 3163 (1980).
http://dx.doi.org/10.1021/ja00529a046
59.
59. E. Heinecke, D. Hartmann, R. Muller, and A. Hese, J. Chem. Phys. 109, 906 (1998).
http://dx.doi.org/10.1063/1.476631
60.
60. E. S. Kadantsev, M. J. Stott, and A. Rubio, J. Chem. Phys. 124, 134901 (2006).
http://dx.doi.org/10.1063/1.2186999
61.
61. S. Grimme and M. Parac, Chem. Phys. Chem. 4, 292 (2003).
http://dx.doi.org/10.1002/cphc.200390047
62.
62. S. Sharifzadeh, A. Biller, L. Kronik, and J. B. Neaton, Phys. Rev. B 85, 125307 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.125307
63.
63. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley VCH, 2011).
64.
64. A. Girlando, L. Grisanti, M. Masino, I. Bilotti, A. Brillante, R. G. Della Valle, and E. Venuti, Phys. Rev. B 82, 035208 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.035208
65.
65. A. Girlando, L. Grisanti, M. Masino, A. Brillante, R. G. Della Valle, and E. Venuti, J. Chem. Phys. 135, 084701 (2011).
http://dx.doi.org/10.1063/1.3625293
66.
66. D. Chandler, in Les Houches. Part I. Liquids, Freezing and the Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (Elsevier Science, B.V., 1991).
67.
67. S. A. Egorov, K. F. Everitt, and J. L. Skinner, J. Phys. Chem. A 103, 9494 (1999).
http://dx.doi.org/10.1021/jp9919314
68.
68. A. Troisi and G. Orlandi, J. Phys. Chem. B 106, 2093 (2002).
http://dx.doi.org/10.1021/jp0133182
69.
69. A. Troisi and G. Orlandi, J. Phys. Chem. A 110, 4065 (2006).
http://dx.doi.org/10.1021/jp055432g
70.
70. A. Troisi, D. L. Cheung, and D. Andrienko, Phys. Rev. Lett. 102, 116602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.116602
71.
71. J. Strümpfer and K. Schulten, J. Chem. Phys. 134, 095102 (2011).
http://dx.doi.org/10.1063/1.3557042
72.
72. P. Huo and D. F. Coker, J. Chem. Phys. 136, 115102 (2012).
http://dx.doi.org/10.1063/1.3693019
73.
73. C. Olbrich, J. Strümpfer, K. Schulten, and U. Kleinekathöfer, J. Phys. Chem. B 115, 758 (2011).
http://dx.doi.org/10.1021/jp1099514
74.
74. S. Shim, P. Rebentrost, S. Valleau, and A. Aspuru-Guzik, Biophys. J. 102, 649 (2012).
http://dx.doi.org/10.1016/j.bpj.2011.12.021
75.
75. C. H. Mak and D. Chandler, Phys. Rev. A 41, 5709 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.5709
76.
76. R. Egger, C. H. Mak, and U. Weiss, Phys. Rev. E 50, R655 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.R655
77.
77. N. Makri, Chem. Phys. Lett. 193, 435 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85654-S
78.
78. D. E. Makarov and N. Makri, Chem. Phys. Lett. 221, 482 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00275-4
79.
79. H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).
http://dx.doi.org/10.1016/0009-2614(90)87014-I
80.
80. U. Manthe, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992).
http://dx.doi.org/10.1063/1.463007
81.
81. M. H. Beck, A. Jackle, G. A. Worth, and H.-D. Meyer, Phys. Rep. 324, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
82.
82. Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
http://dx.doi.org/10.1143/JPSJ.58.101
83.
83. R. A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964).
http://dx.doi.org/10.1146/annurev.pc.15.100164.001103
84.
84. T. Förster, Discuss. Faraday Soc. 27, 7 (1959).
http://dx.doi.org/10.1039/DF9592700007
85.
85. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
http://dx.doi.org/10.1063/1.1699044
86.
86. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
http://dx.doi.org/10.1103/RevModPhys.59.1
87.
87. U. Weiss, Quantum Dissipative Systems (World Scientific, 2008).
88.
88. A. G. Redfield, Adv. Magn. Reson. 1, 1 (1965).
89.
89. K. Blum, Density Matrix Theory and Applications (Plenum, 1981).
90.
90. W. T. Pollard, A. K. Felts, and R. A. Friesner, Adv. Chem. Phys. 93, 77 (1996).
http://dx.doi.org/10.1002/9780470141526.ch3
91.
91. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
92.
92. A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234110 (2009).
http://dx.doi.org/10.1063/1.3155214
93.
93. B. Yoon, J. M. Deutch, and J. H. Freed, J. Chem. Phys. 62, 4687 (1975).
http://dx.doi.org/10.1063/1.430417
94.
94. S. Mukamel, I. Oppenheim, and J. Ross, Phys. Rev. A 17, 1988 (1978).
http://dx.doi.org/10.1103/PhysRevA.17.1988
95.
95. S. Mukamel, Chem. Phys. 37, 33 (1979).
http://dx.doi.org/10.1016/0301-0104(79)80004-X
96.
96. It should be noted that the time-local approach should be favored in cases where the system bath coupling is treated perturbatively, as in Sec. IV. This is because in the stochastic limit, such a perturbation is Gaussian in nature, and thus partially ordered cumulants embody the correct statistics. An example of this is seen in the discussion of pure dephasing in Appendix D.
97.
97. M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys. 115, 2991 (2001).
http://dx.doi.org/10.1063/1.1385562
98.
98. A. A. Golosov and D. R. Reichman, J. Chem. Phys. 115, 9848 (2001).
http://dx.doi.org/10.1063/1.1412611
99.
99. T. C. Berkelbach, D. R. Reichman, and T. E. Markland, J. Chem. Phys. 136, 034113 (2012).
http://dx.doi.org/10.1063/1.3671372
100.
100. T. C. Berkelbach, T. E. Markland, and D. R. Reichman, J. Chem. Phys. 136, 084104 (2012).
http://dx.doi.org/10.1063/1.3687342
101.
101. B. Palmieri, D. Abramavicius, and S. Mukamel, J. Chem. Phys. 130, 204512 (2009).
http://dx.doi.org/10.1063/1.3142485
102.
102. J. Strümpfer and K. Schulten, J. Chem. Theory Comput. 8, 2808 (2012).
http://dx.doi.org/10.1021/ct3003833
103.
103. PHI102 was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign; also available at http://www.ks.uiuc.edu/Research/phi/.
104.
104. N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4600 (1995).
http://dx.doi.org/10.1063/1.469508
105.
105. A. Suárez, R. Silbey, and I. Oppenheim, J. Chem. Phys. 97, 5101 (1992).
http://dx.doi.org/10.1063/1.463831
106.
106. N. Makri, E. Sim, D. E. Makarov, and M. Topaler, Proc. Nat. Acad. Sci. U.S.A. 93, 3926 (1996).
http://dx.doi.org/10.1073/pnas.93.9.3926
107.
107. E. Sim and N. Makri, J. Phys. Chem. B 101, 5446 (1997).
http://dx.doi.org/10.1021/jp970707g
108.
108. G. D. Scholes and K. P. Ghiggino, J. Chem. Phys. 103, 8873 (1995).
http://dx.doi.org/10.1063/1.470076
109.
109. C.-L. Tao, X.-H. Zhang, F.-J. Zhang, Y.-Y. Liu, and H.-L. Zhang, Mater. Sci. Eng., B 140, 1 (2007).
http://dx.doi.org/10.1016/j.mseb.2007.01.028
110.
110. T. Holstein, Ann. Phys. 8, 325 (1959).
http://dx.doi.org/10.1016/0003-4916(59)90002-8
111.
111. R. E. Peierls, Quantum Theory of Solids (Oxford University Press, 1955).
112.
112. T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002).
http://dx.doi.org/10.1063/1.1470200
113.
113. J. L. Skinner and D. Hsu, J. Phys. Chem. 90, 4931 (1986).
http://dx.doi.org/10.1021/j100412a013
114.
114. D. Reichman, R. J. Silbey, and A. Suárez, J. Chem. Phys. 105, 10500 (1996).
http://dx.doi.org/10.1063/1.472976
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/11/10.1063/1.4794425
Loading
/content/aip/journal/jcp/138/11/10.1063/1.4794425
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/11/10.1063/1.4794425
2013-03-15
2015-01-30

Abstract

Singlet fission, a spin-allowed energy transfer process generating two triplet excitons from one singlet exciton, has the potential to dramatically increase the efficiency of organic solar cells. However, the dynamical mechanism of this phenomenon is not fully understood and a complete, microscopic theory of singlet fission is lacking. In this work, we assemble the components of a comprehensive microscopic theory of singlet fission that connects excited state quantum chemistry calculations with finite-temperature quantum relaxation theory. We elaborate on the distinction between localized diabatic and delocalized exciton bases for the interpretation of singlet fission experiments in both the time and frequency domains. We discuss various approximations to the exact density matrix dynamics and propose Redfield theory as an ideal compromise between speed and accuracy for the detailed investigation of singlet fission in dimers, clusters, and crystals. Investigations of small model systems based on parameters typical of singlet fission demonstrate the numerical accuracy and practical utility of this approach.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/11/1.4794425.html;jsessionid=1l6minlhdgtyv.x-aip-live-03?itemId=/content/aip/journal/jcp/138/11/10.1063/1.4794425&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Microscopic theory of singlet exciton fission. I. General formulation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/11/10.1063/1.4794425
10.1063/1.4794425
SEARCH_EXPAND_ITEM