1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Reconstructing equilibrium entropy and enthalpy profiles from non-equilibrium pulling
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/138/11/10.1063/1.4795236
1.
1. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of second law violations in shearing steady states,” Phys. Rev. Lett. 71, 24012404 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2401
2.
2. D. J. Evans and D. J. Searles, “Equilibrium microstates which generate second law violating steady states,” Phys. Rev. E 50, 16451648 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.1645
3.
3. G. Gallavotti and E. G. D. Cohen, “Dynamical ensembles in stationary states,” J. Stat. Phys. 80, 931970 (1995).
http://dx.doi.org/10.1007/BF02179860
4.
4. G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences,” Phys. Rev. E 60, 27212726 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.2721
5.
5. C. Jarzynski, “Nonequilibrium equality for free energy differences,” Phys. Rev. Lett. 78, 26902693 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2690
6.
6. G. Hummer and A. Szabo, “Free energy reconstruction from nonequilibrium single-molecule pulling experiments,” Proc. Natl. Acad. Sci. U.S.A. 98, 36583661 (2001).
http://dx.doi.org/10.1073/pnas.071034098
7.
7. J. P. M. Postma, H. J. C. Berendsen, and J. R. Haak, “Thermodynamics of cavity formation in water—A molecular-dynamics study,” Faraday Symp. Chem. Soc. 17, 5567 (1982).
http://dx.doi.org/10.1039/fs9821700055
8.
8. D. Smith and A. Haymet, “Free-energy, entropy and internal energy of hydrophobic interactions-Computer simulations,” J. Chem. Phys. 98, 64456454 (1993).
http://dx.doi.org/10.1063/1.464809
9.
9. A. Wallqvist and B. J. Berne, “Computer-simulation of hydrophobic hydration forces on stacked plates at short-range,” J. Phys. Chem. 99, 28932899 (1995).
http://dx.doi.org/10.1021/j100009a053
10.
10. N. Lu, D. A. Kofke, and T. B. Woolf, “Staging is more important than perturbation method for computation of enthalpy and entropy changes in complex systems,” J. Phys. Chem. B 107, 55985611 (2003).
http://dx.doi.org/10.1021/jp027627j
11.
11. J. Nummela, F. Yassin, and I. Andricioaei, “Entropy-enthalpy decomposition from nonequilibrium work trajectories,” J. Chem. Phys. 128, 024104 (2008).
http://dx.doi.org/10.1063/1.2817332
12.
12. G. M. Torrie and J. P. Valleau, “Non-physical sampling distributions in Monte Carlo free-energy estimation—Umbrella sampling,” J. Comput. Phys. 23, 187199 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90121-8
13.
13. L. Onsager and S. Machlup, “Fluctuations and irreversible processes,” Phys. Rev. 91, 15051512 (1953).
http://dx.doi.org/10.1103/PhysRev.91.1505
14.
14. S. Machlup and L. Onsager, “Fluctuations and irreversible process. II. Systems with kinetic energy,” Phys. Rev. 91, 15121515 (1953).
http://dx.doi.org/10.1103/PhysRev.91.1512
15.
15. J. C. Smith, “Protein dynamics: comparison of simulations with inelastic neutron scattering experiments,” Q. Rev. Biophys. 24, 227291 (1991).
http://dx.doi.org/10.1017/S0033583500003723
16.
16. G. Hummer and A. Szabo, “Free energy profiles from single-molecule pulling experiments,” Proc. Natl. Acad. Sci. U.S.A. 107, 2144121446 (2010).
http://dx.doi.org/10.1073/pnas.1015661107
17.
17. D. D. L. Minh and J. D. Chodera, “Estimating equilibrium ensemble averages using multiple time slices from driven nonequilibrium processes: Theory and application to free energies, moments, and thermodynamic length in single-molecule pulling experiments,” J. Chem. Phys. 134, 024111 (2011).
http://dx.doi.org/10.1063/1.3516517
18.
18. D. D. L. Minh and S. Vaikuntanathan, “Density-dependent analysis of nonequilibrium paths improves free energy estimates. II. A Feynman-Kac formalism,” J. Chem. Phys. 134, 034117 (2011).
http://dx.doi.org/10.1063/1.3541152
19.
19. A. B. Adib, “Stochastic actions for diffusive dynamics: Reweighting, sampling, and minimization,” J. Phys. Chem. B 112, 59105916 (2008).
http://dx.doi.org/10.1021/jp0751458
20.
20. J. Liphardt, S. Dumont, S. Smith, I. Tinoco, and C. Bustamante, “Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality,” Science 296, 18321835 (2002).
http://dx.doi.org/10.1126/science.1071152
21.
21. D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, and C. Bustamante, “Verification of the crooks fluctuation theorem and recovery of RNA folding free energies,” Nature (London) 437, 231234 (2005).
http://dx.doi.org/10.1038/nature04061
22.
22. N. C. Harris, Y. Song, and C.-H. Kiang, “Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski's equality,” Phys. Rev. Lett. 99, 068101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.068101
23.
23. D. Brockwell, E. Paci, R. Zinober, G. Beddard, P. Olmsted, D. Smith, R. Perham, and S. Radford, “Pulling geometry defines the mechanical resistance of a beta-sheet protein,” Nat. Struct. Biol. 10, 731737 (2003).
http://dx.doi.org/10.1038/nsb968
24.
24. M. Carrion-Vazquez, H. Li, H. Lu, P. Marszalek, A. Oberhauser, and J. Fernandez, “The mechanical stability of ubiquitin is linkage dependent,” Nat. Struct. Biol. 10, 738743 (2003).
http://dx.doi.org/10.1038/nsb965
25.
25. G. Yang, C. Cecconi, W. Baase, I. Vetter, W. Breyer, J. Haack, B. Matthews, F. Dahlquist, and C. Bustamante, “Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme,” Proc. Natl. Acad. Sci. U.S.A. 97, 139144 (2000).
http://dx.doi.org/10.1073/pnas.97.1.139
26.
26. A. J. Wilcox, J. Choy, C. Bustamante, and A. Matouschek, “Effect of protein structure on mitochondrial import,” Proc. Natl. Acad. Sci. U.S.A. 102, 1543515440 (2005).
http://dx.doi.org/10.1073/pnas.0507324102
27.
27. X. S. Xie, “Single-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics,” J. Chem. Phys. 117, 1102411032 (2002).
http://dx.doi.org/10.1063/1.1521159
28.
28. I. Rasnik, S. A. Mckinney, and T. Ha, “Surfaces and orientations: Much to fret about?,” Acc. Chem. Res. 38, 542548 (2005).
http://dx.doi.org/10.1021/ar040138c
29.
29. J. T. Fourkas, “Rapid determination of the three-dimensional orientation of single molecules,” Opt. Lett. 26, 211213 (2001).
http://dx.doi.org/10.1364/OL.26.000211
30.
30. S. Paramore, G. S. Ayton, and G. A. Voth, “Extending the fluctuation theorem to describe reaction coordinates,” J. Chem. Phys. 126, 051102 (2007).
http://dx.doi.org/10.1063/1.2463306
31.
31. P. Maragakis, M. Spichty, and M. Karplus, “A differential fluctuation theorem,” J. Phys. Chem. B 112, 61686174 (2008).
http://dx.doi.org/10.1021/jp077037r
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/11/10.1063/1.4795236
Loading
/content/aip/journal/jcp/138/11/10.1063/1.4795236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/138/11/10.1063/1.4795236
2013-03-20
2014-10-22

Abstract

The Jarzynski identity can be applied to instances when a microscopic system is pulled repeatedly but quickly along some coordinate, allowing the calculation of an equilibrium free energy profile along the pulling coordinate from a set of independent non-equilibrium trajectories. Using the formalism of Wiener stochastic path integrals in which we assign temperature-dependent weights to Langevin trajectories, we derive exact formulae for the temperature derivatives of the free energy profile. This leads naturally to analytical expressions for decomposing a free energy profile into equilibrium entropy and internal energy profiles from non-equilibrium pulling. This decomposition can be done from trajectories evolved at a unique temperature without repeating the measurement as done in finite-difference decompositions. Three distinct analytical expressions for the entropy-energy decomposition are derived: using a time-dependent generalization of the weighted histogram analysis method, a quasi-harmonic spring limit, and a Feynman-Kac formula. The three novel formulae of reconstructing the pair of entropy-energy profiles are exemplified by Langevin simulations of a two-dimensional model system prototypical for force-induced biomolecular conformational changes. Connections to single-molecule experimental means to probe the functionals needed in the decomposition are suggested.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/138/11/1.4795236.html;jsessionid=3oanshm5qt8j2.x-aip-live-03?itemId=/content/aip/journal/jcp/138/11/10.1063/1.4795236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reconstructing equilibrium entropy and enthalpy profiles from non-equilibrium pulling
http://aip.metastore.ingenta.com/content/aip/journal/jcp/138/11/10.1063/1.4795236
10.1063/1.4795236
SEARCH_EXPAND_ITEM